The *b*-Chromatic Number of Some Path Related Graphs

S. K. Vaidya and Rakhimol V. Isaac

Abstract—A b-coloring of a graph G is a proper coloring with additional property that each color class contains a vertex that has a neighbor in all the other color classes. Here we investigate the b-chromatic number of some path related graphs.

Index Terms—Coloring, proper coloring, b-coloring, b-vertex, b-chromatic number.

MSC 2010 Codes - 05C15, 05C38, 05C76.

I. Introduction

E begin with finite, connected and undirected graph G = (V(G), E(G)) without loops and multiple edges. For any graph theoretic terminology and notations we refer to West [1]. A proper k-coloring of a graph G is a function $c:V(G) \to \{1,2,...,k\}$ such that $c(u) \neq c(v)$ for all $uv \in E(G)$. The color class c_i is the subset of vertices of G that are assigned to color i. The chromatic number $\chi(G)$ is the minimum integer k for which G admits proper k-coloring. The concept of graph coloring is one of the potential areas of research in graph theory. Some variants of graph coloring are also introduced. Some of them are edge coloring, a-coloring, b-coloring etc. This work is focused on the b-coloring of graphs.

A proper k-coloring c of a graph G is a b-coloring if for every color class c_i , there is a vertex with color i which has at least one neighbor in every other color classes. Such vertex is called a b-vertex. The b-chromatic number of a graph G, denoted by $\varphi(G)$, is the largest integer k for which G admits a b-coloring for k colors and G is called b-colorable graph.

The concept of *b*-coloring was introduced by Irving and Manlove [2]. In the same paper they investigated several results on this newly defined concept and proved that determining the *b*-chromatic number is NP-hard problem. The *b*-coloring of regular graphs is studied by Blidia *et al.* [3] while *b*-coloring of tight graphs is studied by Sales and Sampaio [4] and also by Havet *et al.* [5]. The discussion on the *b*-chromatic number of some power graphs is carried out by Effantin and Kheddouci [6]. The present work is aimed to investigate *b*-chromatic number of some path related graphs.

Dr. S. K. Vaidya is a professor at the Department of Mathematics, Saurashtra University, Rajkot, Gujarat - 360005, INDIA

(e-mail: samirkvaidya@yahoo.co.in)

Rakhimol V. Isaac is with Department of Mathematics, Christ College, Rajkot, Gujarat - 360005, INDIA

(e-mail: rakhiisaac@yahoo.co.in)

II. MAIN RESULTS

Proposition 2.1:([2]) If G admits a b-coloring with m colors, G must have at least m vertices with degree at least m-1. It is obvious that $\chi(G) \leq \varphi(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

Proposition 2.2:([7]) If K_n, P_n and C_n are respectively the complete graph, path and cycle on n vertices, then

- 1) $\varphi(K_n) = n$, for all n.
- 2) $\varphi(P_n) = \varphi(C_n) = 3$, for all $n \ge 5$.
- 3) $\varphi(P_2) = \varphi(P_3) = \varphi(P_4) = 2$.
- 4) $\varphi(C_3) = 3$ and $\varphi(C_4) = 2$.

Definition 2.3: The shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G, say G' and G''. Join each vertex u' in G' to the neighbors of the corresponding vertex u'' in G''.

Theorem 2.4:
$$\varphi(D_2(P_n)) = \begin{cases} 2, & n = 2, 3, 4 \\ 3, & n = 5, 6, 7 \\ 4, & n = 8, 9, 10 \\ 5, & n \ge 11. \end{cases}$$
Proof: Let $D_2(P_n)$ be the shadow graph of path P_n with provious P_n and P_n with provious P_n and P_n with P_n

Proof: Let $D_2(P_n)$ be the shadow graph of path P_n with vertices v_1, v_2, v_n in first copy of P_n and $v_1', v_2',, v_n'$ in second copy of P_n . The four vertices v_1, v_n, v_1' and v_n' are of degree 2 and the remaining vertices are of degree 4. Also in $D_2(P_n)$ each v_i is adjacent to the vertices $v_{i-1}, v_{i-1}', v_{i+1}$ and v_{i+1}' where i=2,3,...,n-1.

The proof is divided into several cases.

Case 1: When n=2.

 $|V(D_2(P_2))|=4$ and $V(D_2(P_2))=\{v_1,v_2,v_1',v_2'\}$. By Proposition 2.2, $\varphi(D_2(P_2))=2$ as the graph $D_2(P_2)$ is isomorphic to C_4 .

Case 2: When n=3.

 $|V(D_2(P_3))| = 6$ and $V(D_2(P_3)) = \{v_1, v_2, v_3, v_1', v_2', v_3'\}.$ Also the graph $D_2(P_3)$ has four vertices of degree 2 and two vertices of degree 4. As $\Delta(D_2(P_3)) = 4$, $\varphi(D_2(P_3)) \leq 5$. If $\varphi(D_2(P_3)) = 5$ then $D_2(P_3)$ must have five vertices of degree 4, which is not possible, as we stated earlier that $D_2(P_3)$ has only two vertices of degree 4. Consequently, $\varphi(D_2(P_3) \neq 5$. If $\varphi(D_2(P_3)) = 4$ then $D_2(P_3)$ must have four vertices of degree 3, which is not possible, as $D_2(P_3)$ has no vertices of degree 3. Consequently, $\varphi(D_2(P_3)) \neq 4$. By Proposition 2.1, $\varphi(D_2(P_3)) \leq 3$ as $D_2(P_3)$ has four vertices of degree 2. Suppose $\varphi(D_2(P_3)) = 3$, then we color the vertices as $c(v_1) = 1$, $c(v_2) = 2$, $c(v_3) = 1$, $c(v_1') = 1$, $c(v_2') = 3$, $c(v_3') = 1$. This gives b-vertices for the color classes c_1 and c_2 . But there is no b-vertex for the color class c_3 . Thus due to the adjacency of vertices in $D_2(P_3)$, any proper coloring using three colors is not a b-coloring. Clearly $\varphi(D_2(P_3)) \neq 3$.

Thus $\varphi(D_2(P_3))=2$. Consequently, we color the vertices as $c(v_1)=1$, $c(v_2)=2$, $c(v_3)=1$, $c(v_1')=1$, $c(v_2')=2$, $c(v_3')=1$. Then v_1 and v_2 are the *b*-vertices for the color classes c_1 and c_2 respectively.

Case 3: When n = 4.

 $|V(D_2(P_4))| = 8$ and $V(D_2(P_4)) = \{v_1, v_2, v_3, v_4, v_1', v_2'\}$ v_2', v_3', v_4' . Also the graph $D_2(P_4)$ has four vertices of degree 2 and four vertices of degree 4. As $\Delta(D_2(P_4)) = 4$, $\varphi(D_2(P_4)) \leq 5$. If $\varphi(D_2(P_4)) = 5$ then $D_2(P_4)$ must have five vertices of degree 4, which is not possible, as we stated earlier that $D_2(P_4)$ has only four vertices of degree 4. Consequently, $\varphi(D_2(P_4)) \neq 5$. If $\varphi(D_2(P_4)) = 4$ then $D_2(P_4)$ must have four vertices of degree 3, which is not possible, as $D_2(P_4)$ has no vertices of degree 3. Consequently, $\varphi(D_2(P_4)) \neq 4$. By Proposition 2.1, $\varphi(D_2(P_4)) \leq 3$ as $D_2(P_4)$ has four vertices of degree 2. Suppose $\varphi(D_2(P_4)) =$ 3, then we color the vertices as $c(v_1) = 2$, $c(v_2) = 1$, $c(v_3) = 3$, $c(v_4) = 2$, $c(v_1') = 3$, $c(v_2') = 1$, $c(v_3') = 3$, $c(v_4') = 2$. This gives b-vertices for the color classes c_1 and c_3 . But there is no b-vertex for the color class c_2 . Thus due to the adjacency of vertices in $D_2(P_4)$, any proper coloring using three colors is not a b-coloring. Clearly $\varphi(D_2(P_4)) \neq 3$. Thus $\varphi(D_2(P_4)) = 2$. Consequently, we color the vertices as $c(v_1) = 2$, $c(v_2) = 1$, $c(v_3) = 2$, $c(v_4) = 1$, $c(v_1') = 2$, $c(v_2') = 1$, $c(v_3') = 2$, $c(v_4') = 1$. Then v_1 and v_2 are the b-vertices for the color classes c_2 and c_1 respectively.

Case 4: When n = 5.

 $|V(D_2(P_5))| = 10 \text{ and } V(D_2(P_5)) = \{v_1, v_2, v_3, v_4, v_5, v_1', v_2', v_3', v_4', v_5'\}.$ Also the graph $D_2(P_5)$ has four vertices of degree 2 and six vertices of degree 4. As $\Delta(D_2(P_5)) = 4$, $\varphi(D_2(P_5)) \leq 5$. Due to the adjacency of vertices in $D_2(P_5)$, at most three b-vertices can be generated for any proper coloring. Thus $\varphi(D_2(P_5)) = 3$. Consequently, we color the vertices as $c(v_1) = c(v_1') = 1$, $c(v_2) = c(v_2') = 2$, $c(v_3) = c(v_3') = 3$, $c(v_4) = c(v_4') = 1$, $c(v_5) = c(v_5') = 1$, which is a b-coloring with the b-vertices v_4, v_2 and v_3 for the color classes c_1, c_2 and c_3 respectively.

Case 5: When n = 6.

 $|V(D_2(P_6))|=12 \text{ and } V(D_2(P_6))=\{v_1,v_2,v_3,v_4,v_5,v_6,v_1',v_2',v_3',v_4',v_5',v_6'\}. \text{ Also the graph } D_2(P_6) \text{ has four vertices of degree 2 and eight vertices of degree 4. As } \Delta(D_2(P_6))=4, \\ \varphi(D_2(P_6))\leq 5. \text{ Due to the adjacency of vertices in } D_2(P_6), \\ \text{at most three } b\text{-vertices can be generated for any proper coloring. Thus } \varphi(D_2(P_6))=3. \text{ Consequently, we color the vertices as } c(v_1)=c(v_1')=1, \ c(v_2)=c(v_2')=2, \\ c(v_3)=c(v_3')=3, \ c(v_4)=c(v_4')=1, \ c(v_5)=c(v_5')=2, \\ c(v_6)=c(v_6')=3, \text{ which is } b\text{-coloring with the } b\text{-vertices } \\ v_4,v_2 \text{ and } v_3 \text{ for the color classes } c_1,\ c_2 \text{ and } c_3 \text{ respectively.} \\ \textbf{Case 6: When } n=7.$

$|V(D_2(P_7))|=14 \text{ and } V(D_2(P_7))=\{v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_1',v_2',v_3',v_4',v_5',v_6',v_7'\}. \text{ Also the graph } D_2(P_7) \text{ has four vertices of degree } 2 \text{ and ten vertices of degree } 4. \text{ As } \Delta(D_2(P_7))=4, \ \varphi(D_2(P_7))\leq 5. \text{ Due to the adjacency of vertices in } D_2(P_7), \text{ at most three } b\text{-vertices can be generated for any proper coloring. Thus } \varphi(D_2(P_7))=3. \text{ Consequently,}$

we color the vertices as $c(v_1) = c(v_1') = 1$, $c(v_2) = c(v_2') = 2$, $c(v_3) = c(v_3') = 3$, $c(v_4) = c(v_4') = 1$, $c(v_5) = c(v_5') = 2$, $c(v_6) = c(v_6') = 3$, $c(v_7) = c(v_7') = 1$, which is b-coloring

with the b-vertices v_4, v_2 and v_3 for the color classes c_1, c_2 and c_3 respectively.

Case 7: When n = 8.

 $|V(D_2(P_8))| = 16 \text{ and } V(D_2(P_8)) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_1', v_2', v_3', v_4', v_5', v_6', v_7', v_8'\}. \text{ Also the graph } D_2(P_8) \text{ has four vertices of degree 2 and twelve vertices of degree 4. As } \Delta(D_2(P_8)) = 4, \ \varphi(D_2(P_8)) \leq 5. \text{ Due to the adjacency of vertices in } D_2(P_8), \text{ at most four } b\text{-vertices can be generated for any proper coloring. Thus } \varphi(D_2(P_8)) = 4. \text{ Consequently, we color the vertices as } c(v_1) = 1, \ c(v_1') = 4, \ c(v_2) = 2, \ c(v_2') = 2, \ c(v_3) = 3, \ c(v_3') = 3, \ c(v_4) = 1, \ c(v_4') = 4, \ c(v_5) = 3, \ c(v_5') = 2, \ c(v_6) = 1, \ c(v_6') = 1, \ c(v_7) = 4, \ c(v_7') = 4, \ c(v_8) = 3, \ c(v_8') = 2, \ \text{which is a } b\text{-coloring with the } b\text{-vertices } v_6', v_2, v_3 \text{ and } v_7' \text{ for the color classes } c_1, \ c_2, \ c_3 \text{ and } c_4 \text{ respectively.}$

Case 8: When n = 9.

 $|V(D_2(P_9))| = 18 \text{ and } V(D_2(P_9)) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_1', v_2', v_3', v_4', v_5', v_6', v_7', v_8', v_9'\}. \text{ Also the graph } D_2(P_9) \text{ has four vertices of degree 2 and fourteen vertices of degree 4. As } \Delta(D_2(P_9)) = 4, \varphi(D_2(P_9)) \leq 5. \text{ Due to the adjacency of vertices in } D_2(P_9), \text{ at most four } b\text{-vertices can be generated for any proper coloring. Thus } \varphi(D_2(P_9)) = 4. \text{ Consequently, we color the vertices as } c(v_1) = 1, c(v_2) = 2, c(v_3) = 3, c(v_4) = 1, c(v_5) = 3, c(v_6) = 1, c(v_7) = 4, c(v_8) = 3, c(v_9) = 4, c(v_1') = 4, c(v_2') = 2, c(v_3') = 3, c(v_4') = 4, c(v_5') = 2, c(v_6') = 1, c(v_7') = 4, c(v_8') = 2, c(v_9') = 4, \text{ which is a } b\text{-coloring with the } b\text{-vertices } v_6', v_2, v_3 \text{ and } v_7' \text{ for the color classes } c_1, c_2, c_3 \text{ and } c_4 \text{ respectively.}$

Case 9: When n = 10.

 $|V(D_2(P_{10}))| = 20 \text{ and } V(D_2(P_{10})) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_1', v_2', v_3', v_4', v_5', v_6', v_7', v_8', v_9', v_{10}'\}. \quad \text{Also the graph } D_2(P_{10}) \text{ has four vertices of degree 2 and sixteen vertices of degree 4. As } \Delta(D_2(P_{10})) = 4, \ \varphi(D_2(P_{10})) \leq 5.$ Due to the adjacency of vertices in $D_2(P_{10})$, at most four b-vertices can be generated for any proper coloring. Thus $\varphi(D_2(P_{10})) = 4$. Consequently, we color the vertices as $c(v_1) = 1, \ c(v_2) = 2, \ c(v_3) = 3, \ c(v_4) = 1, \ c(v_5) = 3, \ c(v_6) = 1, \ c(v_7) = 1, \ c(v_8) = 3, \ c(v_9) = 4, \ c(v_{10}) = 2, \ c(v_1') = 4, \ c(v_2') = 2, \ c(v_3') = 3, \ c(v_4') = 4, \ c(v_5') = 1, \ c(v_6') = 1, \ c(v_7') = 4, \ c(v_8') = 2, \ c(v_9') = 4, \ c(v_{10}') = 2, \ \text{which is a b-coloring with the b-vertices v_6', v_2, v_3 and v_7' for the color classes c_1, c_2, c_3 and c_4 respectively.}$

Case 10: When n = 11.

 $\overline{|V(D_2(P_{11}))|} = 22 \text{ and } V(D_2(P_{11})) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_1', v_2', v_3', v_4', v_5', v_6', v_7', v_8', v_9', v_{10}', v_{11}'\}.$ Also the graph $D_2(P_{11})$ has four vertices of degree 2 and eighteen vertices of degree 4. As $\Delta(D_2(P_{11})) = 4$, $\varphi(D_2(P_{11})) \leq 5$. Due to the adjacency of vertices in $D_2(P_{11})$, at most five b-vertices can be generated for any proper coloring. Thus $\varphi(D_2(P_{11})) = 5$. Consequently, we color the vertices as $c(v_1) = 2$, $c(v_2) = 1$, $c(v_3) = 3$, $c(v_4) = 2$, $c(v_5) = 4$, $c(v_6) = 3$, $c(v_7) = 5$, $c(v_8) = 4$, $c(v_9) = 3$, $c(v_{10}) = 5$, $c(v_{11}) = 2$, $c(v_1') = 4$, $c(v_2') = 1$, $c(v_3') = 5$, $c(v_4') = 2$, $c(v_5') = 1$, $c(v_6') = 3$, $c(v_7') = 2$, $c(v_8') = 4$, $c(v_9') = 1$, $c(v_{10}') = 5$, $c(v_{11}') = 4$, which is a b-coloring with the b-vertices v_2, v_4, v_6, v_8 and v_{10} for the color classes c_1, c_2, c_3, c_4 and c_5 respectively.

Case 11: When n > 11.

Figure 1

 $|V(D_2(P_n))|$ =2n. We color the vertices $v_1, v_2,, v_{11}, v_1', v_2', ..., v_{11}'$ as in $D_2(P_{11})$ and for the remaining vertices assign the colors as

$$\begin{array}{lll} c(v_{2i}) = & c(v_{2i}') = & 1 \\ c(v_{2i+1}) = & c(v_{2i+1}') = & 2 & ; i = 6, 7, 8, \dots \end{array}$$

The *b*-vertices are same as the *b*-vertices in the case of $D_2(P_{11})$. Thus $\varphi(D_2(P_n))=5$, for all n>11. Hence the theorem.

Illustration 2.5: The graph $D_2(P_{11})$ and its *b*-coloring is shown in *Figure 1*.

Definition 2.6: The splitting graph of a graph G, S'(G), is obtained by adding new vertex v' corresponding to each vertex v of G such that N(v) = N(v') where N(v) and N(v') are the neighborhood sets of v and v' respectively.

Theorem 2.7:
$$\varphi(S'(P_n)) = \begin{cases} 2, & n = 2, 3, 4 \\ 3, & n = 5 \\ 4, & n = 6, 7 \\ 5, & n \geq 8. \end{cases}$$

Proof: Let $v_1, v_2, ..., v_n$ be the vertices of path P_n and $v'_1, v'_2, ..., v'_n$ be the newly added vertices corresponding to the vertices $v_1, v_2, ..., v_n$ to form $S'(P_n)$. In $S'(P_n)$, v_1 is adjacent to v_2 and v'_2, v_n is adjacent to v_{n-1} and v'_{n-1} and each v_i is adjacent to $v_{i-1}, v_{i+1}, v'_{i-1}$ and v'_{i+1} where i = 2, 3, ..., n-1.

The proof is divided into following cases.

Case 1: When n=2.

 $|V(S'(P_2))|=4$ and $V(S'(P_2))=\{v_1,v_2,v_1',v_2'\}$. By Proposition 2.2, $\varphi(S'(P_2))=2$ as the graph $S'(P_2)$ is isomorphic to P_4 .

Case 2: When n=3.

 $|V(S'(P_3))| = 6 \text{ and } V(S'(P_3)) = \{v_1, v_2, v_3, v_1', v_2', v_3'\}.$ Also the graph $S'(P_3)$ has two vertices of degree 1, three vertices of degree 2 and one vertex of degree 4. As $\Delta(S'(P_3)) = 4$, $\varphi(S'(P_3)) \leq 5$. If $\varphi(S'(P_3)) = 5$, then $S'(P_3)$ must have five vertices of degree 4 which is not possible, as we stated earlier that $S'(P_3)$ has only one vertex of degree 4. Consequently, $\varphi(S'(P_3)) \neq 5$. If $\varphi(S'(P_3)) = 4$, then $S'(P_3)$ must have four vertices of degree 3 which is not possible, as $S'(P_3)$ has no vertex of degree 3. Consequently, $\varphi(S'(P_3)) \neq 4$. Therefore $\varphi(S'(P_3))$ can be either 3 or 2. But due to the adjacency of vertices in $S'(P_3)$, at most two b-vertices can be generated for any proper coloring. Thus $\varphi(S'(P_3)) = 2$. Consequently, we color the vertices as $c(v_1) = c(v_1') = 1$, $c(v_2) = c(v_2') = 2$, $c(v_3) = c(v_3') = 1$, which is a b-coloring with b-vertices v_1 and v_2 for the color classes c_1 and c_2 respectively.

Case 3: When n=4.

 $|V(S'(P_4))| = 8$ and $V(S'(P_4)) = \{v_1, v_2, v_3, v_4, v_1', v_2'\}$ v_2', v_3', v_4' Also the graph $S'(P_4)$ has two vertices of degree 1, four vertices of degree 2 and two vertices of degree 4. As $\Delta(S'(P_4)) = 4$, $\varphi(S'(P_4)) \leq 5$. If $\varphi(S'(P_4)) = 5$ then $S'(P_4)$ must have five vertices of degree 4 which is not possible, as we stated earlier that $S'(P_4)$ has only two vertices of degree 4. Consequently, $\varphi(S'(P_4)) \neq 5$. If $\varphi(S'(P_4)) = 4$ then $S'(P_4)$ must have four vertices of degree 3 which is not possible, as $S'(P_4)$ has no vertex of degree 3. Consequently, $\varphi(S'(P_4)) \neq 4$. Therefore $\varphi(S'(P_4))$ can be either 3 or 2. But due to the adjacency of vertices in $S'(P_4)$, at most two b-vertices can be generated for any proper coloring. Thus $\varphi(S'(P_4)) = 2$. Consequently, we color the vertices as $c(v_1) = c(v_1') = 1$, $c(v_2) = c(v_2') = 2$, $c(v_3) = c(v_3') = 3$, $c(v_4) = c(v_4') = 2$, which is a b-coloring with b-vertices v_1 and v_2 for the color classes c_1 and c_2 respectively.

Case 4: When n = 5.

 $|V(S'(P_5))| = 10$ and $V(S'(P_5)) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ $v_1', v_2', v_3', v_4', v_5'$. Also the graph $S'(P_5)$ has two vertices of degree 1, five vertices of degree 2 and three vertices of degree 4. As $\Delta(S'(P_5)) = 4$, $\varphi(S'(P_5)) \leq 5$. If $\varphi(S'(P_5)) = 5$ then $S'(P_5)$ must have five vertices of degree 4 which is not possible, as we stated earlier that $S'(P_5)$ has only three vertices of degree 4. Consequently, $\varphi(S'(P_5)) \neq 5$. If $\varphi(S'(P_5)) = 4$, then $S'(P_5)$ must have four vertices of degree 3 which is not possible, as $S'(P_5)$ has no vertex of degree 3. Consequently, $\varphi(S'(P_5)) \neq 4$. Therefore $\varphi(S'(P_5))$ can be either 3 or 2. Due to the adjacency of vertices in $S'(P_5)$, at most three b-vertices can be generated for any proper coloring. Thus $\varphi(S'(P_5)) = 3$. Consequently, we color the vertices as $c(v_1) = c(v_1') = 1$, $c(v_2) = c(v_2') = 2$, $c(v_3) = c(v_3') = 3$, $c(v_4) = c(v_4') = 1$, $c(v_5) = c(v_5') = 2$, which is a b-coloring with b-vertices v_4, v_2 and v_3 for the color classes c_1, c_2 and c_1 respectively.

Case 5: When n = 6.

 $|V(S'(P_6))|=12$ and $V(S'(P_6))=\{v_1,v_2,v_3,v_4,v_5,v_6,v_1',v_2',v_3',v_4',v_5',v_6'\}$. Also the graph $S'(P_6)$ has two vertices of degree 1, six vertices of degree 2 and four vertices of degree 4. As $\Delta(S'(P_6))=4$, $\varphi(S'(P_6))\leq 5$. If $\varphi(S'(P_6))=5$ then $S'(P_6)$ must have five vertices of degree 4 which is not possible, as we stated earlier that $S'(P_6)$ has only four vertices of degree 4. Consequently, $\varphi(S'(P_6))\neq 5$. Therefore $\varphi(S'(P_6))$ can be either 4, 3 or 2. Due to the adjacency of vertices in $S'(P_6)$, at most four b-vertices can be generated for any proper coloring. Thus $\varphi(S'(P_6))=4$. Consequently, we color the vertices as $c(v_1)=3$, $c(v_2)=1$, $c(v_3)=2$, $c(v_4)=2$, $c(v_5)=4$, $c(v_6)=2$, $c(v_1')=4$, $c(v_2')=4$,

 $c(v_3') = 2$, $c(v_4') = 2$, $c(v_5') = 1$, $c(v_6') = 1$, which is a b-coloring with b-vertices v_2, v_3, v_4 and v_5 for the color classes c_1, c_2, c_3 and c_4 respectively.

Case 6: When n=7.

 $|V(S'(P_7))| = 14 \text{ and } V(S'(P_7)) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_1', v_2', v_3', v_4', v_5', v_6', v_7'\}. \text{ Also the graph } S'(P_7) \text{ has two vertices of degree 1, seven vertices of degree 2 and five vertices of degree 4. As } \Delta(S'(P_7)) = 4, \varphi(S'(P_7)) \leq 5. \text{But due to the adjacency of vertices in } S'(P_7), \text{ at most four } b\text{-vertices can be generated for any proper coloring.} \text{Thus } \varphi(S'(P_7)) = 4. \text{ Consequently, we color the vertices as } c(v_1) = 4, c(v_2) = 1, c(v_3) = 2, c(v_4) = 3, c(v_5) = 1, c(v_6) = 4, c(v_7) = 2, c(v_1') = 3, c(v_2') = 3, c(v_3') = 4, c(v_4') = 4, c(v_5') = 1, c(v_6') = 4, c(v_7') = 3, \text{ which is a } b\text{-coloring with } b\text{-vertices } v_2, v_3, v_4 \text{ and } v_6 \text{ for the color classes } c_1, c_2, c_3 \text{ and } c_4 \text{ respectively.}$

Case 7: When n = 8.

 $|V(S'(P_8))| = 16 \ \text{ and } \ V(S'(P_8)) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_1', v_2', v_3', v_4', v_5', v_6', v_7', v_8'\}. \ \text{Also the graph } S'(P_8) \ \text{has two vertices of degree 1, eight vertices of degree 2 and six vertices of degree 4. As } \Delta(S'(P_8)) = 4, \ \varphi(S'(P_8)) \leq 5. \ \text{Due to the adjacency of vertices in } S'(P_8), \ \text{at most five } b\text{-vertices can be generated for any proper coloring. Thus } \varphi(S'(P_8)) = 5. \ \text{Consequently, we color the vertices as } c(v_1) = 3, \ c(v_2) = 1, \ c(v_3) = 2, \ c(v_4) = 3, \ c(v_5) = 4, \ c(v_6) = 2, \ c(v_7) = 5, \ c(v_8) = 4, \ c(v_1') = 4, \ c(v_2') = 4, \ c(v_3') = 4, \ c(v_4') = 5, \ c(v_5') = 1, \ c(v_6') = 1, \ c(v_7') = 3, \ c(v_8') = 3, \ \text{which is a } b\text{-coloring with } b\text{-vertices } v_2, v_3, v_4, v_5 \ \text{and } v_7 \ \text{for the color classes } c_1, c_2, c_3, c_4 \ \text{and } c_5 \ \text{respectively.}$

Case 8: When n > 8.

 $|V(S'(P_n))| = 2n$. We color the vertices $v_1, v_2,..., v_8, v'_1, v'_2, ..., v'_8$ as in $S'(P_8)$ and for the remaining vertices assign the colors as

$$\begin{array}{lll} c(v_{2i+1}) = & c(v_{2i+1}') = & 1; & i = 4, 5, 6, \dots \\ c(v_{2i}) = & c(v_{2i}') = & 2; & i = 5, 6, 7, 8, \dots \end{array}$$

The *b*-vertices are same as the *b*-vertices in the case of $S'(P_8)$. Thus $\varphi(S'(P_n))=5$; for all n>8. Hence the theorem.

Illustration 2.8: The graph $S'(P_8)$ and its *b*-coloring is shown in *Figure 2*.

Definition 2.9: The middle graph M(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent

edges of G or one is a vertex of G and the other is an edge incident on it.

Remark 2.10: As reported in Vijayalakshmi *et al.* [8], $\varphi(M(P_n)) = n$ which is incorrect as we have the following theorem.

Theorem 2.11:
$$\varphi(M(P_n)) = \begin{cases} 2, & n=2\\ 3, & n=3,4\\ 4, & n=5,6,7\\ 5, & n \geq 8. \end{cases}$$
Proof: Let $v_1, v_2, ..., v_n$ be the vertices and $e_1, e_2, ..., e_{n-1}$ be

Proof: Let $v_1, v_2, ..., v_n$ be the vertices and $e_1, e_2, ..., e_{n-1}$ be the edges of path P_n . $M(P_n)$ is the middle graph of P_n with vertices $v_1, v_2,, v_{n-1}, v_n, e_1, e_2,, e_{n-1}$ such that e_1 is adjacent to v_1, v_2 and e_2, e_{n-1} is adjacent to v_{n-1}, v_n and e_{n-2} and e_i is adjacent to v_i, v_{i+1}, e_{i-1} and $e_{i+1}; i = 2, 3, ..., n-2$

The proof is divided into following cases.

Case 1: When n=2.

 $|V(M(P_2))|=3$ and $V(M(P_2))=\{v_1,e_1,v_2\}$. By Proposition 2.2, $\varphi(M(P_2))=2$ as the graph $M(P_2)$ is isomorphic to P_3 .

Case 2: When n = 3.

 $|V(M(P_3))|=5$ and $V(M(P_3))=\{v_1,e_1,v_2,e_2,v_3\}$. Also the graph $M(P_3)$ has two vertices of degree 1, one vertex of degree 2 and two vertices of degree 3. Since $M(P_3)$ contains a K_3 , $\varphi(M(P_3))\geq 3$. As $\Delta(M(P_3))=3$, $\varphi(M(P_3))\leq 4$. If $\varphi(M(P_3))=4$ then $M(P_3)$ must have four vertices of degree 3, which is not possible as we stated earlier that $M(P_3)$ has only two vertices of degree 3. Consequently, $\varphi(M(P_3))\neq 4$. Thus $\varphi(M(P_3))=3$ and we color the vertices as $c(e_1)=1$, $c(e_2)=3$, $c(v_1)=c(v_2)=c(v_3)=2$, which is a b-coloring with b-vertices e_1,v_2 and e_2 for the color classes c_1,c_2 and c_3 respectively.

Case 3: When n = 4.

 $|V(M(P_4))| = 7 \text{ and } V(M(P_4)) = \{v_1, e_1, v_2, e_2, v_3, e_3, v_4\}.$ Also the graph $M(P_4)$ has two vertices of degree 1, two vertices of degree 2, two vertices of degree 3 and one vertex of degree 4. Since $M(P_4)$ contains a K_3 , $\varphi(M(P_4)) \geq 3$. As $\Delta(M(P_4)) = 4$, $\varphi(M(P_4)) \leq 5$. Thus $3 \leq \varphi(M(P_4)) \leq 5$. If $\varphi(M(P_4)) = 5$ then $M(P_4)$ must have five vertices of degree 4 which is not possible as we stated earlier that $M(P_4)$ has only one vertex of degree 4. Consequently, $\varphi(M(P_4)) \neq 5$. If $\varphi(M(P_4)) = 4$ then $M(P_4)$ must have four vertices of degree

3 which is not possible as $M(P_4)$ has only two vertices of degree 3. Consequently, $\varphi(M(P_4)) \neq 4$. Thus $\varphi(M(P_4)) = 3$. Consequently, we color the vertices as $c(v_1) = 2$, $c(v_2) = 2$, $c(v_3) = 2$, $c(v_4) = 2$, $c(e_1) = 1$, $c(e_2) = 3$, $c(e_3) = 1$, which is a b-coloring with b-vertices e_1, e_2 and e_3 for the color classes c_1, c_2 and c_3 respectively.

Case 4: When n = 5.

 $|V(M(P_5))|=9$ and $V(M(P_5))=\{v_1,e_1,v_2,e_2,v_3,e_3,v_4,e_4,v_5\}$. Also the graph $M(P_5)$ has two vertices of degree 1, three vertices of degree 2, two vertices of degree 3 and two vertices of degree 4. Since $M(P_5)$ contains a K_3 , $\varphi(M(P_5))\geq 3$. As $\Delta(M(P_5)=4,\,\varphi(M(P_5))\leq 5$. Thus $3\leq \varphi(M(P_5))\leq 5$. If $\varphi(M(P_5))=5$ then $M(P_5)$ must have five vertices of degree 4 which is not possible as we stated earlier that $M(P_5)$ has only two vertices of degree 4. Consequently, $\varphi(M(P_5))\neq 5$. Suppose $\varphi(M(P_5))=4$, we color the vertices as $c(v_1)=2,\,c(v_2)=3,\,c(v_3)=1,\,c(v_4)=1,\,c(v_5)=4,\,c(e_1)=1,\,c(e_2)=4,\,c(e_3)=2,\,c(e_4)=3$, which is a b-coloring with b-vertices e_1,e_3,e_4 and e_2 for the color classes c_1,c_2,c_3 and c_4 respectively. Thus $\varphi(M(P_5))=4$.

Case 5: When n = 6.

 $|V(M(P_6))|=11$ and $V(M(P_6))=\{v_1,e_1,v_2,e_2,v_3,e_3,v_4,e_4,v_5,e_5,v_6\}$. Also the graph $M(P_6)$ has two vertices of degree 1, four vertices of degree 2, two vertices of degree 3 and three vertices of degree 4. Since $M(P_6)$ contains a K_3 , $\varphi(M(P_6))\geq 3$. As $\Delta(M(P_6)=4,\,\varphi(M(P_6))\leq 5$. Thus $3\leq \varphi(M(P_6))\leq 5$. If $\varphi(M(P_6))=5$ then $M(P_6)$ must have five vertices of degree 4 which is not possible as we stated earlier that $M(P_6)$ has only three vertices of degree 4. Consequently, $\varphi(M(P_6))\neq 5$. Suppose $\varphi(M(P_6))=4$, we color the vertices as $c(v_1)=2,\,c(v_2)=3,\,c(v_3)=1,\,c(v_4)=1,\,c(v_5)=4,\,c(v_6)=2,\,c(e_1)=1,c(e_2)=4,\,c(e_3)=2,\,c(e_4)=3,\,c(e_5)=1$, which is a b-coloring with b-vertices e_1,e_3,e_4 and e_2 for the color classes c_1,c_2,c_3 and c_4 respectively. Thus $\varphi(M(P_6))=4$.

Case 6: When n = 7.

 $|V(M(P_7))|=13 \text{ and } V(M(P_7))=\{v_1,e_1,v_2,e_2,v_3,e_3,v_4,e_4,v_5,e_5,v_6,e_6,v_7\}. \text{ Also the graph } M(P_7) \text{ has two vertices of degree 1, five vertices of degree 2, two vertices of degree 3 and four vertices of degree 4. Since } M(P_7) \text{ contains a } K_3, \, \varphi(M(P_7)) \geq 3. \text{ As } \Delta(M(P_7)=4,\, \varphi(M(P_7)) \leq 5. \text{ Thus } 3 \leq \varphi(M(P_7)) \leq 5. \text{ If } \varphi(M(P_7))=5 \text{ then } M(P_7) \text{ must have five vertices of degree 4 which is not possible as we stated earlier that } M(P_7) \text{ has only four vertices of degree 4. Consequently, } \varphi(M(P_7)) \neq 5. \text{ Suppose } \varphi(M(P_7))=4, \text{ we color the vertices as } c(v_1)=2,\, c(v_2)=3,\, c(v_3)=1,\, c(v_4)=1,\, c(v_5)=4,\, c(v_6)=2,\, c(v_7)=4,\, c(e_1)=1,\, c(e_2)=4,\, c(e_3)=2,\, c(e_4)=3,\, c(e_5)=1,\, c(e_6)=3,\, \text{which is a b-coloring with b-vertices } e_1,e_3,e_4 \text{ and } e_2 \text{ for the color classes } c_1,c_2,c_3 \text{ and } c_4 \text{ respectively. Thus } \varphi(M(P_7))=4.$

Case 7: When n = 8.

 $|V(M(P_8))| = 15 \text{ and } V(M(P_8)) = \{v_1, e_1, v_2, e_2, v_3, e_3, v_4, e_4, v_5, e_5, v_6, e_6, v_7, e_7, v_8\}. \text{ Also } M(P_8) \text{ has two vertices of degree 1, six vertices of degree 2, two vertices of degree 3 and five vertices of degree 4. Since } M(P_8) \text{ contains a } K_3, \varphi(M(P_8)) \geq 3. \text{ As } \Delta(M(P_8)) = 4, \varphi(M(P_8)) \leq 5. \text{ Thus } 3 \leq \varphi(M(P_8)) \leq 5. \text{ As } M(P_8) \text{ has five vertices of degree}$

4, we claim that $\varphi(M(P_8)) = 5$. Then we color the vertices as $c(v_1) = 2$, $c(v_2) = 3$, $c(v_3) = 4$, $c(v_4) = 5$, $c(v_5) = 1$, $c(v_6) = 2$, $c(v_7) = 1$, $c(v_8) = 4$, $c(e_1) = 5$, $c(e_2) = 1$, $c(e_3) = 2$, $c(e_4) = 3$, $c(e_5) = 4$, $c(e_6) = 5$, $c(e_7) = 3$, which is a b-coloring with b-vertices e_2, e_3, e_4, e_5 and e_6 for the color classes c_1, c_2, c_3, c_4 and c_5 respectively. Thus $\varphi(M(P_8)) = 5$. Case 8: When n > 8.

 $|V(M(P_n))|=2n-1$. We color the vertices $v_1,v_2,...,v_8,e_1,e_2,...,e_8$ as in $M(P_8)$ and for the remaining vertices assign the colors as

$$\begin{array}{lll} c(v_{2i}) = & c(v_{2i+1}) = & 4, \\ c(e_{2i}) = & 2, \\ c(e_{2i+1}) = & 3; & i = 4, 5, 6, ... \end{array}$$

The *b*-vertices are same as the *b*-vertices in the case of $M(P_8)$. Thus $\varphi(M(P_n))=5$, for all n>8. Hence the theorem. **Illustration 2.12:** The graph $M(P_8)$ and its *b*-coloring is shown in *Figure 3*.

III. CONCLUDING REMARKS

The *b*-chromatic number of P_n is known while we investigate the *b*-chromatic numbers for $D_2(P_n)$, $S'(P_n)$ and $M(P_n)$. The present work throws some light on the *b*-coloring of larger graphs obtained by means of some graph operations on standard graphs.

REFERENCES

- D. B. West, Introduction to Graph Theory, 2/e, Prentice-Hall of India, New Delhi, 2003.
- [2] R. W. Irving and D. F. Manlove, "The b-chromatic number of a graph", Discrete Applied Mathematics, vol.91, pp. 127-141, 1999.
- [3] M. Blidia, F. Maffray and Z. Zemir, "On b-colorings in regular graphs", Discrete Applied Mathematics, vol.157, pp. 1787-1793, 2009.
- [4] C. L. Sales and L. Sampaio, "b-coloring of m-tight graphs", Electronic Notes in Discrete mathematics, vol. 35, pp. 209-214, 2009.
- [5] F. Havet, C. L. Sales and L. Sampaio, "b-coloring of tight graphs", Discrete Applied Mathematics, vol. 160, pp. 2709-2715, 2012.
- [6] B. Effantin and H. Kheddouci, "The b-chromatic number of some power graphs", Discrete Mathematics and Theoretical Computer Science, vol. 6, pp. 45-54, 2003.
- [7] M. Kouider, M. Mahéo, "Some bounds for the b-chromatic number of a graph", Discrete Mathematics, vol. 256, pp. 267-277, 2002.
- [8] D. Vijayalakshmi, K. Thilagavathi and N. Roopesh, "b-chromatic number of M(C_n), M(P_n), M(F_{1,n}) and M(W_n)", Open Journal of Discrete Mathematics, vol. 1, pp. 85-88, 2011.

