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The b-Chromatic Number of Some Path Related
Graphs

S. K. Vaidya and Rakhimol V. Isaac

Abstract—A b-coloring of a graph G is a proper coloring with Il. MAIN RESULTS

additional property that each color class contains a vertex that P . : ~ ; ;

has a neighbor in all the other color classes. Here we investigate Proposition 2.11[2]) It G an|ts ab coloring with m colors,

the b-chromatic number of some path related graphs. G must have at leash vertices with degree at least — 1.
It is obvious thaty(G) < ¢(G) < A(G)+1 , whereA(G)

Index Terms—Coloring, proper coloring, b-coloring, b-vertex, is the maximum degree df.

b-chromatic number.

MSC 2010 Codes - 05C15. 05C38, 05C76. Proposition 2.2([7])) If K,,P, andC, are respectively the
complete graph, path and cycle anvertices, then

1) p(K,) = n, for all n.

2) o(Pn) = ¢(Cy) =3, forall n > 5.

3) p(P2) = ¢(Ps) = ¢(Py) =2.

4) (p(C3) =3 and 90(04) = 2.
E begin with finite, connected and undirected grapRefinition 2.3: The shadow graph(G) ofaconne/cted gr?ph
G = (V(G), E(G)) without loops and multiple edges.G is constructed by taking two copies 6f, sayG’ andG”.

For any graph theoretic terminology and notations we refer {91 eacflh.vert/elm’ in G to the neighbors of the corresponding
West [1]. A proper k-coloring of a graph( is a function Verexu” in G”.

I. INTRODUCTION

2. n=234
¢ : V(G) — {1,2,...k} such thate(u) # c(v) for al s e
uv € E(G). The color class; is the subset of vertices of Theorem 2.4:0(Ds(Pn)) = ¢ ,° . — ¢'o' 1o
G that are assigned to color The chromatic numbey(G) is 5’ n> 1’1' ’

the minimum integek for Wh.iCh.G admits propek-cqloring. Proof: Let Dy(P,) be the shadow graph of patR, with

The concept of graph coloring is one of the potential ar.eas\ggrticesi)hv% ....v, in first copy of P, and v}, v}, ....,v/, in
resea}rch in graph theory. Some variants of grqph colc_mng &&ond copy ofP,. The four verticesv, v,, v, andv’, are
also introduced. Some of them are edge colorirgploring, of degree 2 and the remaining vertices are of degree 4. Also
b-coloring etc. This work is focused on thecoloring of ;, D (P,) eachy; is adjacent to the vertices_y, v/_,vi1
graphs. andv],, wherei =2,3,..,n— 1.

A proper k-coloring ¢ of a graphG is a b-coloring if for The proof is divided into several cases.
every color clasg;, there is a vertex with coloi which has Case 1:Whenn = 2.
at least one neighbor in every other color classes. Such verteX/(Dy(R,))| = 4 and V(D2(P,)) = {v1,vs,v},v5}. By
is called ab-vertex. The b-chromatic number of a graphG,  Proposition 2.2,0(D2(P,)) = 2 as the graphDy(P,) is
denoted byy(G), is the largest integek for which G admits  isomorphic toCy.

a b-coloring for k colors andG is calledb-colorable graph.  Case 2:Whenn = 3.

The concept ofb-coloring was introduced by Irving and  |V(D2(Ps))| = 6 andV (D2 (Ps)) = {v1, va, vs, v}, vh, v5}.
Manlove [2]. In the same paper they investigated severdlso the graphD.(Ps) has four vertices of degree 2 and two
results on this newly defined concept and proved that detgertices of degree 4. AA(Dy(Ps)) = 4, p(D2(Ps)) < 5. If
mining the b-chromatic number is NP-hard problem. The ¢(D2(Ps)) = 5 thenDy(P;) must have five vertices of degree
coloring of regular graphs is studied by Blicgaal. [3] while 4, which is not possible, as we stated earlier thatPs) has
b-coloring of tight graphs is studied by Sales and Sampaio [dhly two vertices of degree 4. ConsequenilyD»(Ps) # 5.
and also by Havedt al. [5]. The discussion on thiechromatic If ¢(D2(Ps)) = 4 then Dy(Ps;) must have four vertices of
number of some power graphs is carried out by Effantin amigree 3, which is not possible, @3%,(P;) has no vertices
Kheddouci [6]. The present work is aimed to investigate of degree 3. Consequently(Ds(Ps)) # 4. By Proposition
chromatic number of some path related graphs. 2.1, p(D2(Ps)) < 3 as Dy(Ps3) has four vertices of degree

2. Supposep(D2(P3)) = 3, then we color the vertices as

Dr. S. K. Vaidya is a professor at the Department of Mathematic§(“1) =1, c(v2) = 2, c(v3) = 1, c(v]) = 1, ¢(v3) = 3,

Saurashtra University, Rajkot, Gujarat - 360005, INDIA c(vg) = 1. This givesb-vertices for the color classes and
(e-mail: samirkvaidya@yahoo.co.in) _ _ co. But there is nab-vertex for the color classs. Thus due
Rakhimol V. Isaac is with Department of Mathematics, Christ Colleg%, h di f . . lori
Rajkot, Gujarat - 360005, INDIA 0 the adjacency of vertices i,(P;), any proper coloring

(e-mail: rakhiisaac@yahoo.co.in) using three colors is notiacoloring. Clearlyp(D2(Ps)) # 3.



INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: 2231-5330), VOL. 4, NO. 1, 2014 8

Thusp(D2(Ps)) = 2. Consequently, we color the vertices asvith the b-verticesv,, vo and vz for the color classes;, c;
cvr) =1, e(va) = 2, c(uz) = 1, c(v]) = 1, c(vh) = 2, andcs respectively.
c(vs) = 1. Thenv; and v, are theb-vertices for the color Case 7:Whenn = 8.

classes:; andc, respectively. |V(D2(Pg))| = 16 andV (D2 (Ps)) = {v1, v2, v3, v4, 5, Vs,
Case 3:Whenn = 4. v7, Vs, U, V5, U, U}, Uk, vg, vk, vg }. Also the graphDy(Ps) has
|[V(Dy(Py))| = 8 and V(D2(Py)) = {wv1,v2,vs3,v4,v;, four vertices of degree 2 and twelve vertices of degree 4. As

vh,vh, vy }. Also the graphDy(Py) has four vertices of de- A(D2(Ps)) = 4, ¢(D2(Ps)) < 5. Due to the adjacency of
gree 2 and four vertices of degree 4. A{D,(P,)) = 4, vertices inDy(FPs), at most fourb-vertices can be generated
©(D2(Py)) < 5. If p(D2(Py)) = 5 then Do(P,) must for any proper coloring. Thug(D2(Fs)) = 4. Consequently,
have five vertices of degree 4, which is not possible, as wee color the vertices ag(vy) = 1, c(v}) = 4, c(va) = 2,
stated earlier tha,(P;) has only four vertices of degreec(v}) = 2, c¢(vs) = 3, c(vh) = 3, c(vq) = 1, ¢(vy) = 4,

4. Consequentlyp(D2(Py)) # 5. If @o(D2(Py)) = 4 then c¢(vs) = 3, c(vf) = 2, c(vs) = 1, c(vg) = 1, c(vr) = 4,
Dy(Py) must have four vertices of degree 3, which is nat(v;) = 4, ¢(vs) = 3, ¢(v§) = 2, which is ab-coloring with
possible, ad),(Py) has no vertices of degree 3. Consequentlihe b-verticesvy, vo, v3 andw?, for the color classes;, ca, c3
©(D2(Py)) # 4. By Proposition 2.1,p0(D2(P;)) < 3 as andcy respectively.

Dy (Py) has four vertices of degree 2. Suppedd.(P;)) = Case 8:Whenn =9.

3, then we color the vertices aqv1) = 2, c(v2) = 1, |V(D2(Py))| = 18 andV (D2 (Py)) = {v1, v2, v3, v4, Vs, Vs,
c(vs) = 3, c(va) = 2, c¢(vf) = 3, c(vh) = 1, c(vh) = 3, wvr,vs,v9, 0,0, v, v}, V5, v, vh,v5,v5}. Also the graph
c(v)) = 2. This givesb-vertices for the color classes and D.(Py) has four vertices of degree 2 and fourteen vertices
cs. But there is nob-vertex for the color classe. Thus due of degree 4. AsA(Dy(Py)) = 4, p(D2(Py)) < 5. Due to the
to the adjacency of vertices if2(P,), any proper coloring adjacency of vertices iD2(P,), at most fourb-vertices can
using three colors is not@coloring. Clearlyp(D2(Py)) # 3. be generated for any proper coloring. Thp&Ds(Py)) = 4.
Thus¢(D2(Ps)) = 2. Consequently, we color the vertices a€onsequently, we color the vertices @s;) = 1, c¢(v2) = 2,
cvr) = 2, e(va) = 1, c(vz) = 2, c(vg) = 1, c(v)) = 2, c(vz) = 3, c(va) = 1, c(vs) = 3, c(vs) = 1, c(v7) = 4,

c(vh) = 1, c¢(vs) = 2, ¢(v)) = 1. Thenwv; and vy are the c(vs) = 3, c(vg) = 4, c(v)) = 4, c(vy) = 2, c(v}) = 3

b-vertices for the color classes andc¢; respectively. c(vy) = 4, c(vf) = 2, c(vg) = 1, c(vh) = 4, c(v§) = 2,

Case 4:Whenn = 5. c(vg) = 4, which is ab-coloring with theb-verticesvg, v, vs
|[V(D2(Ps5))| = 10 and V(D3(Ps)) = {v1,v2,vs3,v4,vs5, anduv’ for the color classes;, ca, c3 andcy respectively.

v, v5, vy, vy, vk }. Also the graphD,(Ps) has four vertices of Case 9:Whenn = 10.
degree 2 and six vertices of degree 4. A$Dy(Ps)) = 4, |[V(D2(Pio))| = 20 and V(D2(Pyg)) = {v1,v2,v3,04, U5,
©(D2(P5)) < 5. Due to the adjacency of vertices I (Ps),  vs, v7, s, Vg, V10, V], Uh, U, Uy, Uk, UG, Vb, v, v, vl }.  Also
at most threeb-vertices can be generated for any propehe graphD.(Pio) has four vertices of degree 2 and sixteen
coloring. Thus ¢(D2(P5)) = 3. Consequently, we color vertices of degree 4. AA(D3(Pio)) = 4, @(D2(Pio)) < 5.
the vertices as:(v1) = ¢(v]) = 1, c(v2) = c(vh) = 2, Due to the adjacency of vertices iR2(Pio), at most four
c(vs) = c(vh) = 3, c(va) = c(vy) =1, e(vs) = c(vf) = 1, b-vertices can be generated for any proper coloring. Thus
which is ab-coloring with theb-verticesvy, v, andws for the (D2 (Pio)) = 4. Consequently, we color the vertices as
color classes;, co andcs respectively. c(vy) = 1, e(va) = 2, e(vz) = 3, ¢(va) = 1, ¢(vs) = 3,
Case 5:Whenn = 6. c(vg) = 1, c(vr) = 1, ¢(vs) = 3, c(vg) = 4, ¢(vig) = 2,
|V(D2(Fs))| = 12andV (D2 (Ps)) = {v1, v2,v3,04,05,06, c(v]) = 4, c(vh) = 2, c(vy) = 3, c(vy) = 4, c(vf) = 1,
v, vh, vk, v), vh, vg }. Also the graphDy(Ps) has four vertices c(vg) = 1, ¢(vh) = 4, c(vg) = 2, c¢(vf) = 4, c(viy) = 2,
of degree 2 and eight vertices of degree 49, (Fs)) = 4, which is ab-coloring with theb-verticesvg, v2, vs andv for
©(D2(Ps)) < 5. Due to the adjacency of vertices i, (FPs), the color classes;, c2, c3 andc, respectively.
at most threeb-vertices can be generated for any propefase 10:Whenn = 11.
coloring. Thus ¢(D2(FPs)) = 3. Consequently, we color |V(D2(P11))| = 22 andV(D3(P11)) = {v1,v2, v3,v4, Vs,
the vertices as:(v1) = ¢(v)) = 1, c(ve) = c(vh) = 2, we,v7,vs, V9, V10, V11, V], Vh, Vs, V), U, VG, U, 0, VG, Vg, V11 }-
c(vs) = c(vh) = 3, c(va) = c(vy) =1, e(vs) = c(vf) =2, Also the graphDy(P;;) has four vertices of degree 2 and
c(vg) = c(vg) = 3, which is b-coloring with theb-vertices eighteen vertices of degree 4. AA(Dy(P11)) = 4,
vg,v2 andus for the color classes;, co andcs respectively. ¢(D2(Py1)) < 5. Due to the adjacency of vertices in
Case 6:Whenn = 7. D, (P11), at most fiveb-vertices can be generated for any
|V(D2(Pr))| = 14 andV (D2 (P7)) = {v1, v2, v3,v4,05,06, pProper coloring. Thusp(D2(P11)) = 5. Consequently, we
vz, V], Vb, vh, vy, vE, v, vh +. Also the graphD2(P;) has four color the vertices as:(vi) = 2, c(v2) = 1, ¢(vs) = 3,
vertices of degree 2 and ten vertices of degree 4. A&v) = 2, c(vs) = 4, c(vg) = 3, ¢(vr) = 5, ¢(vs) = 4,
A(Dy(P7)) = 4, ¢(D2(Pr)) < 5. Due to the adjacency of c(vg) = 3, ¢(v1p) = 5, ¢(vi1) = 2, ¢(v]) = 4, c(vh) = 1,
vertices inDy(P7), at most threé-vertices can be generatede(vy) = 5, c(vy) = 2, c(vs) = 1, e(vg) = 3, c(vh) = 2,
for any proper coloring. Thug(D2(P7)) = 3. Consequently, ¢(v) = 4, c(v)) = 1, c(viy) = 5, c(v];) = 4, which is a
we color the vertices agv;) = ¢(v]) = 1, c(v2) = c¢(vy) =2, b-coloring with the b-verticesvq, vy, vg, vs and vy for the
c(vg) = c(vh) = 3, ¢(va) = ¢(v)) =1, c(vs) = ¢(vl) = 2, color classes, ca, c3, ¢4 andcs respectively.
c(vg) = c(vg) = 3, c(vr) = ¢(vh) = 1, which is b-coloring Case 11:Whenn > 11.
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Figure 1
|V (D2(Py))| =2n. We color the verticesy, va, ...., v11, v1, [V(S'(Py)) = 8 and V(S'(Py)) = {v1,v2,vs3,04, 0],
v,...,v]; asinDq(Pi1) and for the remaining vertices assigns,, vs, vy }. Also the graphS’(Ps) has two vertices of degree
the colors as 1, four vertices of degree 2 and two vertices of degree 4.
(o) =  c(wh)= 1 As A(S'(Py) = 4, @(S'(Py) < 5. If o(S'(Py) = 5

then S’(P,) must have five vertices of degree 4 which is not
possible, as we stated earlier ti$8{ P,) has only two vertices
The b-vertices are same as thievertices in the case of of degree 4. Consequently(S’(Py)) # 5. If o(S'(Py)) =4
Dy(P11). Thusp(D2(P,)) = 5, for all n > 11. Hence the thenS’(P,) must have four vertices of degree 3 which is not

c(v2iy1) = c(vyp) = 2 ;i=06,7,8,...

theorem. possible, asS’(P,) has no vertex of degree 3. Consequently,
lllustration 2.5: The graphDy(Pi1) and its b-coloring is  ¢(S’(Ps)) # 4. Thereforep(S’(Py)) can be either 3 or
shown inFigure 1. 2. But due to the adjacency of vertices #(P;), at most

Definition 2.6: The splitting graph of a graphy, S’(G), is two b-vertices can be generated for any proper coloring.
obtained by adding new vertex corresponding to each vertexThus ¢(S’(P,)) = 2. Consequently, we color the vertices as
v of G such thatN(v) = N(v') where N(v) and N(v') are c(v1) = c(vy) = 1, c(v2) = c(vh) = 2, c(v3) = c(v3) = 3,

the neighborhood sets afandv’ respectively. c(vg) = ¢(vy) = 2, which is ab-coloring with b-verticesv,
2, n=2,3,4 and v, for the color classes; andc, respectively.
3, n=5 Case 4:Whenn = 5.
Th 2.7: "(P,)) = ’
eorem p(S'(Pn)) 4, n==6,7 [V(S'(Ps))| = 10 and V(S"(P5)) = {v1,v2,v3,v4, V5,
5, n=>8. vl, vy, vh, v}, v} Also the graphS’(Ps) has two vertices of

Proof: Let vq,v2,..,v, be the vertices of path?, and degree 1, five vertices of degree 2 and three vertices of degree
v, vh, ..., vl, be the newly added vertices corresponding to the As A(S"(Ps)) = 4, o(S'(Ps)) < 5. If o(S"(Ps)) =5 then
verticesvy, va, .., v, t0 form S”(Py). In §'(P,), v1 is adjacent §/(P;) must have five vertices of degree 4 which is not pos-
to v andwvs, v, is adjacent ta,_1 andv;,_, and eachy; is  sjble, as we stated earlier thét(P5) has only three vertices
adjacent tov;_1,vi11,v;_; andv;,; wherei=2,3,.n — 1. of degree 4. Consequently(S’(Ps)) # 5. If (S'(Ps)) = 4,
The proof is divided into following cases. then S’(Ps) must have four vertices of degree 3 which is not
Case 1:Whenn = 2. possible, asS’(Ps) has no vertex of degree 3. Consequently,
[V(S'(P2))| = 4 and V(S'(P%)) = {vi,v2,v],v5}. By ©(S'(Ps)) # 4. Thereforep(S’(Ps)) can be either 3 or 2. Due
Proposition 2.2,0(S'(P,)) = 2 as the graphS’(FP,) is to the adjacency of vertices i/ (P5), at most threé-vertices
isomorphic toP;. can be generated for any proper coloring. Th(S’(Ps)) = 3.
Case 2:Whenn = 3. Consequently, we color the vertices &%) = c(v}) = 1,
[V(S'(P3)) = 6 and V' (S'(P3)) = {v1,va,vs, v}, 05,05} c(v2) = c(vh) = 2, c(vs) = c(vh) = 3, c(va) = ¢c(vy) = 1,
Also the graphS’(P3) has two vertices of degree 1, three vere(vs) = c(vs) = 2, which is ab-coloring withb-verticesvy, vo

tices of degree 2 and one vertex of degree 4$’(P;)) = andwvs for the color classes;, c; andc; respectively.
4, o(S'(Ps)) < 5. If p(S’(P3)) =5, thenS’(P;) must have Case 5:Whenn = 6.
five vertices of degree 4 which is not possible, as we stated eartV (S'(Fs))| = 12 and V(S'(Ps))= {v1,v2, v3,v4, U5, Vs,

lier that.S’(Ps) has only one vertex of degree 4. Consequently; , v5, v4, v}, vk, vg}. Also the graphS’(Ps) has two vertices
©(S'(P3)) # 5. 1f o(S"(P3)) = 4, thenS’(P3) must have four of degree 1, six vertices of degree 2 and four vertices of degree
vertices of degree 3 which is not possible, #$P;) has no 4. As A(S'(Ps)) = 4, p(S'(Ps)) < 5. If o(S"(Ps)) = 5
vertex of degree 3. ConsequentiyS’(Ps)) # 4. Therefore then S’(Ps) must have five vertices of degree 4 which is
©(S’(Ps)) can be either 3 or 2. But due to the adjacency afot possible, as we stated earlier tif##{Ps;) has only four
vertices inS’(Ps), at most twob-vertices can be generated fowvertices of degree 4. Consequently,S’(Ps)) # 5. Therefore
any proper coloring. Thug(S’(Ps)) = 2. Consequently, we ¢(S’(FPs)) can be either 4, 3 or 2. Due to the adjacency of
color the vertices as(v1) = c(v)) = 1, c(v2) = c(vy) = 2, vertices inS’(Ps), at most fourb-vertices can be generated
c(vs) = c(vy) = 1, which is ab-coloring with b-verticesv;  for any proper coloring. Thug(S’(Ps)) = 4. Consequently,
andwv, for the color classes; andc; respectively. we color the vertices ag(vy) = 3, c(v2) = 1, c(vs) = 2,
Case 3:Whenn = 4. c(vg) = 2, e(vs) = 4, c(vs) = 2, c(v]) = 4, c(vh) = 4,
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c(vh) = 2, c(vy) = 2, c(vy) = 1, c(vf) = 1, which is ab-
coloring with b-verticesuvq, v3, v4 andwvs for the color classes
1, co, c3 andcy respectively.
Case 6:Whenn = 7.

|V(S/(P7))| = 14 and V(S/(P7)) = {vl,vg,v3,v4,v5,
v, V7, VY, Vh, U5, V), VE, vg, V5 }. Also the graphb’(Pr) has two

vertices of degree 1, seven vertices of degree 2 and five

vertices of degree 4. A\(S'(P;)) = 4, ¢(S'(P;)) < 5.
But due to the adjacency of vertices i#f(P;), at most
four b-vertices can be generated for any proper colorin
Thus ¢(S’(P;)) = 4. Consequently, we color the vertices a
c(vy) = 4, c(va) = 1, ¢(v3) = 2, c(vg) = 3, c(vs) = 1,
clvg) = 4, clvr) = 2, c¢(vf) = 3, c(vh) = 3, c(vh) = 4,
c(vy) =4, c(vf) =1, c(vg) = 4, c(vh) = 3, which is ab-
coloring with b-verticesuvs, vs, v4 andwvg for the color classes
c1, co, c3 andcy respectively.
Case 7:Whenn = 8.

|V(S/(P8))| = 16 and V(S/(Pg)) = {1)1,1)2,1)3,1)4,’05,
Vg, V7, Us, U}, Uy, V4, v}, vl, vG, v, v }. Also the graphS’(Fg)
has two vertices of degree 1, eight vertices of degree 2 and
vertices of degree 4. AA(S'(P%)) = 4, (S’ (Ps)) < 5. Due
to the adjacency of vertices ifi’ (Ps), at most fiveb-vertices
can be generated for any proper coloring. Th(S’(Ps)) = 5.
Consequently, we color the vertices @) = 3, ¢(v2) = 1,
c(vs) = 2, c(va) = 3, c(vs) = 4, c(vg) = 2, c(v7r) = 5,
clvg) = 4, c(v]) = 4, c(vh) = 4, c(vi) = 4, c(v)) = 5,
c(vf) = 1, c(vg) = 1, c(vh) = 3, c(vg) = 3, which is a
b-coloring with b-verticeswvs, v3, v4, v5 and v, for the color
classes, ¢, c3, c4 @andcs respectively.
Case 8:Whenn > 8.

[V (S'(Pn))] 2n. We color the verticesvy,va,...,
vg, V], V5, ...,vg as inS’(Pg) and for the remaining vertices
assign the colors as

1
2.

)

C(U2i+1) = C(vé'H»l) = 57 67
c(va) = c(vy) = 6,7,8, ...

Theb-vertices are same as thevertices in the case &' (F).
Thusp(S’(P,)) = 5; for all n > 8. Hence the theorem.
lllustration 2.8: The graphS’(Ps) and itsb-coloring is shown
in Figure 2.

)
)

4,
5,

edges ofG or one is a vertex ofy and the other is an edge
incident on it.

Remark 2.10: As reported in Vijayalakshmiet al. [8],
©(M(P,)) = n which is incorrect as we have the following
theorem.

2, n=2
Theorem 2.11:p(M(P,)) = Z’ Zi g’é -

5, n>8.

g'roof: Let vq,v9, .., v, be the vertices and,, e, ...,e,_1 be

the edges of pathP,. M(P,) is the middle graph ofP,
with verticesvy, vs, ...., Vn_1, Un, €1, €2, ...., €,_1 SUCh thate;
is adjacent tov;,ve and eq, e,_1 is adjacent tov,_1,v,
and e, o ande; is adjacent tov;,v;11,6,—1 ande; 151 =
;3. .., m—2

The proof is divided into following cases.
Case 1 Whenn = 2.

|[V(M(P2))| =3 andV (M (P,)) ={vi,e1,v2}. By Propo-
sition 2.2,p(M (P,)) = 2 as the graphV/ (P;) is isomorphic
to Ps.
Case 2 Whenn = 3.

|V(M(P3))| =5 andV(M(Pg)) :{1)1, ey, V2, €2, 1}3}. Also
the graphM (P3) has two vertices of degree 1, one vertex of
degree 2 and two vertices of degree 3. Sii¢éPs) contains
a K3, QD(M(PP,)) > 3. As A(M(P3)) =3, (p(M(P3)) < 4. If
e(M(P3)) = 4 then M (P3) must have four vertices of degree
3, which is not possible as we stated earlier thatPs;) has
only two vertices of degree 3. ConsequeniiyM (Ps)) # 4.
Thuso(M(P3)) = 3 and we color the vertices age;) = 1,
c(ez) = 3, ¢(v1) = ¢(v2) = ¢(vz) = 2, which is ab-coloring
with b-verticeseq, v, andes for the color classes;, ¢, and
c3 respectively.
Case 3 Whenn = 4.

|V(M(P4))| = 7 and V(M(P4)) :{1)1, ei1, vy, €2,V3, €3,
v4 }. Also the graph (P,) has two vertices of degree 1, two
vertices of degree 2, two vertices of degree 3 and one vertex
of degree 4. Sincd/(P,) contains aKs, (M (Py)) > 3. As
A(M(Py)) =4, o(M(Py)) < 5. Thus3 < p(M(Py)) < 5. If
o(M(Py)) = 5 thenM (P,) must have five vertices of degree

Definition 2.9: The middle graphV/(G) of a graphG is the 4 which is not possible as we stated earlier thatP,) has
graph whose vertex set ®(G) U E(G) and in which two only one vertex of degree 4. ConsequenfiyM (Py)) # 5. If
vertices are adjacent if and only if either they are adjaceptM (P;)) = 4 then M (P,) must have four vertices of degree
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3 which is not possible ad/(P,) has only two vertices of 4, we claim thatp(M(Ps)) = 5. Then we color the vertices

degree 3. Consequently(M (Py)) # 4. Thusp(M (Py)) = 3.
Consequently, we color the vertices @%1) = 2, ¢(v2) = 2,
c(vz) = 2, c(vg) = 2, cer) = 1, c(ea) = 3, c(ez) = 1,
which is ab-coloring with b-verticese;, es and es for the
color classes;, co andcs respectively.
Case 4 Whenn = 5.

|V(M(P5))| = 9 and V(M(P5)) :{1)1, ei1, V2, €2,V3, €3,

asc(v1) = 2, c(vz2) = 3, c(vs) = 4, c(va) = 5, c(vs) = 1,
clvg) = 2, c(vr) = 1, c(vs) = 4, cler) = 5, ce2) = 1,
cles) =2, c(eq) = 3, c(es) =4, c(eg) =5, c¢(er) = 3, which
is ab-coloring withb-verticeses, es, ey, e5 andeg for the color
classes:, ca, c3, c4 @andcs respectively. Thus(M (FPs)) = 5.
Case 8 Whenn > 8.

|[V(M(P,))| =2n—1 . We color the vertices;, va, ..., vs,

v4,eq4,05}. Also the graphM (Ps) has two vertices of de- ej,es,...,es asinM (Pg) and for the remaining vertices assign
gree 1, three vertices of degree 2, two vertices of degredah® colors as

and two vertices of degree 4. Sindd(Ps) contains akKs,

(M (Ps)) > 3. As A(M(Ps) = 4, ¢(M(Ps)) < 5. Thus
3 < o(M(Ps)) < 5. If o(M(P5)) = 5 then M (P5) must

c(v2i) = c(v2iy1) = 4,
C(egi) = 2,
cleziyr) = 3; 1=4,5,6,..

have five vertices of degree 4 which is not possible as we ) o
stated earlier that\/(Ps) has only two vertices of degreeTheb-vertices are same as thevertices in the case a¥/ (F).

4. Consequentlyp(M (Ps)) # 5. Supposep(M (Ps)) = 4,
we color the vertices a8(vi) = 2, c(v2) = 3, c(vs) = 1,
c(vy) = 1, c¢(vs) = 4, cler) = 1, c(e2) = 4, cles) = 2,
c(eq) = 3, which is ab-coloring with b-verticesey, e3, e4 and

eo for the color classes;, co,c3 and ¢y respectively. Thus

P(M(Ps)) = 4.

Thusp(M(P,)) =5, for all n > 8. Hence the theorem.
lllustration 2.12: The graphM (Ps) and its b-coloring is
shown inFigure 3.

IIl. CONCLUDING REMARKS
The b-chromatic number ofP, is known while we in-

Case 5 Whenn = 6. vestigate theb-chromatic numbers foiDy(P,), S'(P,) and
[V(M(Fs))| = 11 and V(M (Fs)) = {v1,€1,v2,€2,v3,€3,  M(P,). The present work throws some light on theoloring
v4, €4, U5, €5, 6} Also the graph)M (Fs) has two vertices of of larger graphs obtained by means of some graph operations

degree 1, four vertices of degree 2, two vertices of degreeg standard graphs.

and three vertices of degree 4. Sinkg P;) contains aks,
(M (Ps)) > 3. As A(M(Ps) = 4, (M (Fs)) < 5. Thus
3 < p(M(Ps)) < 5. 1If o(M(Ps)) = 5 then M (Ps) must
have five vertices of degree 4 which is not possible as WE']
stated earlier thai/ (Ps) has only three vertices of degree[2]
4. Consequentlyp(M(Ps)) # 5. Supposep(M (Fs)) = 4,
we color the vertices as(v;) = 2, ¢(vz) = 3, c¢(vs) = 1, Bl
clve) = 1, c(vs) = 4, c(vg) = 2, cer) = 1,c(e2) = 4, 4]
cles) = 2, c(eq) = 3, c(es) = 1, which is ab-coloring with
b-verticesey, es, e4 ande, for the color classes;, co, c3 and Bl
1,€3,¢64 2 1,€2,C3

¢y respectively. Thusp(M (FPgs)) = 4. 6]
Case 6 Whenn = 17.

|V(M(P7))| = 13 and V(M(P7)) ={’U1,€1,U2,€2,’U3,€3, 7]
v4, €4, U5, €5, Vg, €6, U7 }. Also the graphM (P;) has two ver-
tices of degree 1, five vertices of degree 2, two vertices dfl
degree 3 and four vertices of degree 4. SiAéeP;) contains
a K3, (p(M(P7)) > 3. As A(M(P7) = 4, QD(M(P7)) < 5.
Thus3 < o(M(P7)) < 5. If o(M(P;)) = 5 then M (Pr)
must have five vertices of degree 4 which is not possible as
we stated earlier that/ (P;) has only four vertices of degree
4. Consequentlyp(M(Pr)) # 5. Supposep(M (Pr)) = 4,
we color the vertices as(v;) = 2, ¢(v2) = 3, c¢(vs) = 1,
c(vg) = 1, e(vs) = 4, c¢(vg) = 2, c(v7) = 4, cer) = 1,
c(ea) =4, cles) =2, c(eq) = 3, ces) =1, c(eg) = 3, which
is a b-coloring with b-verticeses, es, e, and e, for the color
classes:, co, c3 andcy respectively. Thusp(M (Pr)) = 4.
Case 7 Whenn = 8.

|V(M(Pg))| = 15 and V(M(Pg)) ={’U1,€1,U2,€2,’U3,€3,
V4, €4, Us, €5, Vg, €6, U7, €7, ’Ug}. Also M(Pg) has two vertices
of degree 1, six vertices of degree 2, two vertices of degree
3 and five vertices of degree 4. Singé(Ps) contains aKs,
e(M(Pg)) > 3. As A(M(Ps) = 4, ¢(M(Pgs)) < 5. Thus
3 < o(M(Ps)) < 5. As M(Ps) has five vertices of degree
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