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has a neighbor in all the other color classes. Here we investigate
the b-chromatic number of some path related graphs.

Index Terms—Coloring, proper coloring, b-coloring, b-vertex,
b-chromatic number.

MSC 2010 Codes - 05C15, 05C38, 05C76.

I. I NTRODUCTION

W E begin with finite, connected and undirected graph
G = (V (G), E(G)) without loops and multiple edges.

For any graph theoretic terminology and notations we refer to
West [1]. A proper k-coloring of a graphG is a function
c : V (G) → {1, 2, ..., k} such thatc(u) 6= c(v) for all
uv ∈ E(G). The color classci is the subset of vertices of
G that are assigned to colori. The chromatic numberχ(G) is
the minimum integerk for whichG admits properk-coloring.
The concept of graph coloring is one of the potential areas of
research in graph theory. Some variants of graph coloring are
also introduced. Some of them are edge coloring,a-coloring,
b-coloring etc. This work is focused on theb-coloring of
graphs.

A properk-coloring c of a graphG is a b-coloring if for
every color classci, there is a vertex with colori which has
at least one neighbor in every other color classes. Such vertex
is called ab-vertex. The b-chromatic number of a graphG,
denoted byϕ(G), is the largest integerk for which G admits
a b-coloring for k colors andG is calledb-colorable graph.

The concept ofb-coloring was introduced by Irving and
Manlove [2]. In the same paper they investigated several
results on this newly defined concept and proved that deter-
mining the b-chromatic number is NP-hard problem. Theb-
coloring of regular graphs is studied by Blidiaet al. [3] while
b-coloring of tight graphs is studied by Sales and Sampaio [4]
and also by Havetet al. [5]. The discussion on theb-chromatic
number of some power graphs is carried out by Effantin and
Kheddouci [6]. The present work is aimed to investigateb-
chromatic number of some path related graphs.
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II. M AIN RESULTS

Proposition 2.1:([2]) If G admits ab-coloring withm colors,
G must have at leastm vertices with degree at leastm− 1.

It is obvious thatχ(G) ≤ ϕ(G) ≤ ∆(G)+1 , where∆(G)
is the maximum degree ofG.

Proposition 2.2:([7]) If Kn, Pn andCn are respectively the
complete graph, path and cycle onn vertices, then

1) ϕ(Kn) = n, for all n.
2) ϕ(Pn) = ϕ(Cn) = 3, for all n ≥ 5.
3) ϕ(P2) = ϕ(P3) = ϕ(P4) = 2.
4) ϕ(C3) = 3 andϕ(C4) = 2.

Definition 2.3: The shadow graphD2(G) of a connected graph
G is constructed by taking two copies ofG, sayG′ andG′′.
Join each vertexu′ in G′ to the neighbors of the corresponding
vertexu′′ in G′′.

Theorem 2.4:ϕ(D2(Pn)) =















2, n = 2, 3, 4
3, n = 5, 6, 7
4, n = 8, 9, 10
5, n ≥ 11.

Proof: Let D2(Pn) be the shadow graph of pathPn with
verticesv1, v2, ....vn in first copy ofPn andv′1, v

′

2, ...., v
′

n
in

second copy ofPn. The four verticesv1, vn, v′1 and v′
n

are
of degree 2 and the remaining vertices are of degree 4. Also
in D2(Pn) eachvi is adjacent to the verticesvi−1, v

′

i−1, vi+1

andv′
i+1 wherei = 2, 3, .., n− 1.

The proof is divided into several cases.
Case 1:Whenn = 2.
|V (D2(P2))| = 4 and V (D2(P2)) = {v1, v2, v

′

1, v
′

2}. By
Proposition 2.2,ϕ(D2(P2)) = 2 as the graphD2(P2) is
isomorphic toC4.
Case 2:Whenn = 3.
|V (D2(P3))| = 6 andV (D2(P3)) = {v1, v2, v3, v

′

1, v
′

2, v
′

3}.
Also the graphD2(P3) has four vertices of degree 2 and two
vertices of degree 4. As∆(D2(P3)) = 4, ϕ(D2(P3)) ≤ 5. If
ϕ(D2(P3)) = 5 thenD2(P3) must have five vertices of degree
4, which is not possible, as we stated earlier thatD2(P3) has
only two vertices of degree 4. Consequently,ϕ(D2(P3) 6= 5.
If ϕ(D2(P3)) = 4 then D2(P3) must have four vertices of
degree 3, which is not possible, asD2(P3) has no vertices
of degree 3. Consequently,ϕ(D2(P3)) 6= 4. By Proposition
2.1, ϕ(D2(P3)) ≤ 3 as D2(P3) has four vertices of degree
2. Supposeϕ(D2(P3)) = 3, then we color the vertices as
c(v1) = 1, c(v2) = 2, c(v3) = 1, c(v′1) = 1, c(v′2) = 3,
c(v′3) = 1. This givesb-vertices for the color classesc1 and
c2. But there is nob-vertex for the color classc3. Thus due
to the adjacency of vertices inD2(P3), any proper coloring
using three colors is not ab-coloring. Clearlyϕ(D2(P3)) 6= 3.
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Thusϕ(D2(P3)) = 2. Consequently, we color the vertices as
c(v1) = 1, c(v2) = 2, c(v3) = 1, c(v′1) = 1, c(v′2) = 2,
c(v′3) = 1. Then v1 and v2 are theb-vertices for the color
classesc1 andc2 respectively.
Case 3:Whenn = 4.
|V (D2(P4))| = 8 and V (D2(P4)) = {v1, v2, v3, v4, v

′

1,

v′2, v
′

3, v
′

4}. Also the graphD2(P4) has four vertices of de-
gree 2 and four vertices of degree 4. As∆(D2(P4)) = 4,
ϕ(D2(P4)) ≤ 5. If ϕ(D2(P4)) = 5 then D2(P4) must
have five vertices of degree 4, which is not possible, as we
stated earlier thatD2(P4) has only four vertices of degree
4. Consequently,ϕ(D2(P4)) 6= 5. If ϕ(D2(P4)) = 4 then
D2(P4) must have four vertices of degree 3, which is not
possible, asD2(P4) has no vertices of degree 3. Consequently,
ϕ(D2(P4)) 6= 4. By Proposition 2.1,ϕ(D2(P4)) ≤ 3 as
D2(P4) has four vertices of degree 2. Supposeϕ(D2(P4)) =
3, then we color the vertices asc(v1) = 2, c(v2) = 1,
c(v3) = 3, c(v4) = 2, c(v′1) = 3, c(v′2) = 1, c(v′3) = 3,
c(v′4) = 2. This givesb-vertices for the color classesc1 and
c3. But there is nob-vertex for the color classc2. Thus due
to the adjacency of vertices inD2(P4), any proper coloring
using three colors is not ab-coloring. Clearlyϕ(D2(P4)) 6= 3.
Thusϕ(D2(P4)) = 2. Consequently, we color the vertices as
c(v1) = 2, c(v2) = 1, c(v3) = 2, c(v4) = 1, c(v′1) = 2,
c(v′2) = 1, c(v′3) = 2, c(v′4) = 1. Then v1 and v2 are the
b-vertices for the color classesc2 andc1 respectively.
Case 4:Whenn = 5.
|V (D2(P5))| = 10 and V (D2(P5)) = {v1, v2, v3, v4, v5,

v′1, v
′

2, v
′

3, v
′

4, v
′

5}. Also the graphD2(P5) has four vertices of
degree 2 and six vertices of degree 4. As∆(D2(P5)) = 4,
ϕ(D2(P5)) ≤ 5. Due to the adjacency of vertices inD2(P5),
at most threeb-vertices can be generated for any proper
coloring. Thusϕ(D2(P5)) = 3. Consequently, we color
the vertices asc(v1) = c(v′1) = 1, c(v2) = c(v′2) = 2,
c(v3) = c(v′3) = 3, c(v4) = c(v′4) = 1, c(v5) = c(v′5) = 1,
which is ab-coloring with theb-verticesv4, v2 andv3 for the
color classesc1, c2 andc3 respectively.
Case 5:Whenn = 6.
|V (D2(P6))| = 12 andV (D2(P6)) = {v1, v2, v3, v4, v5, v6,

v′1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6}. Also the graphD2(P6) has four vertices
of degree 2 and eight vertices of degree 4. As∆(D2(P6)) = 4,
ϕ(D2(P6)) ≤ 5. Due to the adjacency of vertices inD2(P6),
at most threeb-vertices can be generated for any proper
coloring. Thusϕ(D2(P6)) = 3. Consequently, we color
the vertices asc(v1) = c(v′1) = 1, c(v2) = c(v′2) = 2,
c(v3) = c(v′3) = 3, c(v4) = c(v′4) = 1, c(v5) = c(v′5) = 2,
c(v6) = c(v′6) = 3, which is b-coloring with theb-vertices
v4, v2 andv3 for the color classesc1, c2 andc3 respectively.
Case 6:Whenn = 7.
|V (D2(P7))| = 14 andV (D2(P7)) = {v1, v2, v3, v4, v5, v6,

v7, v
′

1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6, v
′

7}. Also the graphD2(P7) has four
vertices of degree 2 and ten vertices of degree 4. As
∆(D2(P7)) = 4, ϕ(D2(P7)) ≤ 5. Due to the adjacency of
vertices inD2(P7), at most threeb-vertices can be generated
for any proper coloring. Thusϕ(D2(P7)) = 3. Consequently,
we color the vertices asc(v1) = c(v′1) = 1, c(v2) = c(v′2) = 2,
c(v3) = c(v′3) = 3, c(v4) = c(v′4) = 1, c(v5) = c(v′5) = 2,
c(v6) = c(v′6) = 3, c(v7) = c(v′7) = 1, which is b-coloring

with the b-verticesv4, v2 and v3 for the color classesc1, c2
andc3 respectively.
Case 7:Whenn = 8.
|V (D2(P8))| = 16 andV (D2(P8)) = {v1, v2, v3, v4, v5, v6,

v7, v8, v
′

1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6, v
′

7, v
′

8}. Also the graphD2(P8) has
four vertices of degree 2 and twelve vertices of degree 4. As
∆(D2(P8)) = 4, ϕ(D2(P8)) ≤ 5. Due to the adjacency of
vertices inD2(P8), at most fourb-vertices can be generated
for any proper coloring. Thusϕ(D2(P8)) = 4. Consequently,
we color the vertices asc(v1) = 1, c(v′1) = 4, c(v2) = 2,
c(v′2) = 2, c(v3) = 3, c(v′3) = 3, c(v4) = 1, c(v′4) = 4,
c(v5) = 3, c(v′5) = 2, c(v6) = 1, c(v′6) = 1, c(v7) = 4,
c(v′7) = 4, c(v8) = 3, c(v′8) = 2, which is ab-coloring with
the b-verticesv′6, v2, v3 andv′7 for the color classesc1, c2, c3
andc4 respectively.
Case 8:Whenn = 9.
|V (D2(P9))| = 18 andV (D2(P9)) = {v1, v2, v3, v4, v5, v6,

v7, v8, v9, v
′

1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6, v
′

7, v
′

8, v
′

9}. Also the graph
D2(P9) has four vertices of degree 2 and fourteen vertices
of degree 4. As∆(D2(P9)) = 4, ϕ(D2(P9)) ≤ 5. Due to the
adjacency of vertices inD2(P9), at most fourb-vertices can
be generated for any proper coloring. Thusϕ(D2(P9)) = 4.
Consequently, we color the vertices asc(v1) = 1, c(v2) = 2,
c(v3) = 3, c(v4) = 1, c(v5) = 3, c(v6) = 1, c(v7) = 4,
c(v8) = 3, c(v9) = 4, c(v′1) = 4, c(v′2) = 2, c(v′3) = 3,
c(v′4) = 4, c(v′5) = 2, c(v′6) = 1, c(v′7) = 4, c(v′8) = 2,
c(v′9) = 4, which is ab-coloring with theb-verticesv′6, v2, v3
andv′7 for the color classesc1, c2, c3 andc4 respectively.
Case 9:Whenn = 10.
|V (D2(P10))| = 20 andV (D2(P10)) = {v1, v2, v3, v4, v5,

v6, v7, v8, v9, v10, v
′

1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6, v
′

7, v
′

8, v
′

9, v
′

10}. Also
the graphD2(P10) has four vertices of degree 2 and sixteen
vertices of degree 4. As∆(D2(P10)) = 4, ϕ(D2(P10)) ≤ 5.
Due to the adjacency of vertices inD2(P10), at most four
b-vertices can be generated for any proper coloring. Thus
ϕ(D2(P10)) = 4. Consequently, we color the vertices as
c(v1) = 1, c(v2) = 2, c(v3) = 3, c(v4) = 1, c(v5) = 3,
c(v6) = 1, c(v7) = 1, c(v8) = 3, c(v9) = 4, c(v10) = 2,
c(v′1) = 4, c(v′2) = 2, c(v′3) = 3, c(v′4) = 4, c(v′5) = 1,
c(v′6) = 1, c(v′7) = 4, c(v′8) = 2, c(v′9) = 4, c(v′10) = 2,
which is ab-coloring with theb-verticesv′6, v2, v3 andv′7 for
the color classesc1, c2, c3 andc4 respectively.
Case 10:Whenn = 11.
|V (D2(P11))| = 22 andV (D2(P11)) = {v1, v2, v3, v4, v5,

v6, v7, v8, v9, v10, v11, v
′

1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6, v
′

7, v
′

8, v
′

9, v
′

10, v
′

11}.
Also the graphD2(P11) has four vertices of degree 2 and
eighteen vertices of degree 4. As∆(D2(P11)) = 4,
ϕ(D2(P11)) ≤ 5. Due to the adjacency of vertices in
D2(P11), at most fiveb-vertices can be generated for any
proper coloring. Thusϕ(D2(P11)) = 5. Consequently, we
color the vertices asc(v1) = 2, c(v2) = 1, c(v3) = 3,
c(v4) = 2, c(v5) = 4, c(v6) = 3, c(v7) = 5, c(v8) = 4,
c(v9) = 3, c(v10) = 5, c(v11) = 2, c(v′1) = 4, c(v′2) = 1,
c(v′3) = 5, c(v′4) = 2, c(v′5) = 1, c(v′6) = 3, c(v′7) = 2,
c(v′8) = 4, c(v′9) = 1, c(v′10) = 5, c(v′11) = 4, which is a
b-coloring with the b-verticesv2, v4, v6, v8 and v10 for the
color classesc1, c2, c3, c4 andc5 respectively.
Case 11:Whenn > 11.
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Figure 1

|V (D2(Pn))| =2n. We color the verticesv1, v2, ...., v11, v′1,
v′2, . . . , v

′

11 as inD2(P11) and for the remaining vertices assign
the colors as

c(v2i) = c(v′2i) = 1
c(v2i+1) = c(v′2i+1) = 2 ; i = 6, 7, 8, . . .

The b-vertices are same as theb-vertices in the case of
D2(P11). Thusϕ(D2(Pn)) = 5, for all n > 11. Hence the
theorem.
Illustration 2.5: The graphD2(P11) and its b-coloring is
shown inFigure 1.
Definition 2.6: The splitting graph of a graphG, S′(G), is
obtained by adding new vertexv′ corresponding to each vertex
v of G such thatN(v) = N(v′) whereN(v) andN(v′) are
the neighborhood sets ofv andv′ respectively.

Theorem 2.7:ϕ(S′(Pn)) =















2, n = 2, 3, 4
3, n = 5
4, n = 6, 7
5, n ≥ 8.

Proof: Let v1, v2, .., vn be the vertices of pathPn and
v′1, v

′

2, ..., v
′

n
be the newly added vertices corresponding to the

verticesv1, v2, .., vn to formS′(Pn). In S′(Pn), v1 is adjacent
to v2 andv′2, vn is adjacent tovn−1 andv′

n−1 and eachvi is
adjacent tovi−1, vi+1, v

′

i−1 andv′
i+1 wherei = 2, 3, ..n− 1.

The proof is divided into following cases.
Case 1:Whenn = 2.
|V (S′(P2))| = 4 and V (S′(P2)) = {v1, v2, v

′

1, v
′

2}. By
Proposition 2.2,ϕ(S′(P2)) = 2 as the graphS′(P2) is
isomorphic toP4.
Case 2:Whenn = 3.
|V (S′(P3))| = 6 andV (S′(P3)) = {v1, v2, v3, v

′

1, v
′

2, v
′

3}.
Also the graphS′(P3) has two vertices of degree 1, three ver-
tices of degree 2 and one vertex of degree 4. As∆(S′(P3)) =
4, ϕ(S′(P3)) ≤ 5. If ϕ(S′(P3)) = 5, thenS′(P3) must have
five vertices of degree 4 which is not possible, as we stated ear-
lier thatS′(P3) has only one vertex of degree 4. Consequently,
ϕ(S′(P3)) 6= 5. If ϕ(S′(P3)) = 4, thenS′(P3) must have four
vertices of degree 3 which is not possible, asS′(P3) has no
vertex of degree 3. Consequently,ϕ(S′(P3)) 6= 4. Therefore
ϕ(S′(P3)) can be either 3 or 2. But due to the adjacency of
vertices inS′(P3), at most twob-vertices can be generated for
any proper coloring. Thusϕ(S′(P3)) = 2. Consequently, we
color the vertices asc(v1) = c(v′1) = 1, c(v2) = c(v′2) = 2,
c(v3) = c(v′3) = 1, which is ab-coloring with b-verticesv1
andv2 for the color classesc1 andc2 respectively.
Case 3:Whenn = 4.

|V (S′(P4))| = 8 and V (S′(P4)) = {v1, v2, v3, v4, v
′

1,

v′2, v
′

3, v
′

4}. Also the graphS′(P4) has two vertices of degree
1, four vertices of degree 2 and two vertices of degree 4.
As ∆(S′(P4)) = 4, ϕ(S′(P4)) ≤ 5. If ϕ(S′(P4)) = 5
thenS′(P4) must have five vertices of degree 4 which is not
possible, as we stated earlier thatS′(P4) has only two vertices
of degree 4. Consequently,ϕ(S′(P4)) 6= 5. If ϕ(S′(P4)) = 4
thenS′(P4) must have four vertices of degree 3 which is not
possible, asS′(P4) has no vertex of degree 3. Consequently,
ϕ(S′(P4)) 6= 4. Thereforeϕ(S′(P4)) can be either 3 or
2. But due to the adjacency of vertices inS′(P4), at most
two b-vertices can be generated for any proper coloring.
Thusϕ(S′(P4)) = 2. Consequently, we color the vertices as
c(v1) = c(v′1) = 1, c(v2) = c(v′2) = 2, c(v3) = c(v′3) = 3,
c(v4) = c(v′4) = 2, which is ab-coloring with b-verticesv1
andv2 for the color classesc1 andc2 respectively.
Case 4:Whenn = 5.
|V (S′(P5))| = 10 and V (S′(P5)) = {v1, v2, v3, v4, v5,

v′1, v
′

2, v
′

3, v
′

4, v
′

5}. Also the graphS′(P5) has two vertices of
degree 1, five vertices of degree 2 and three vertices of degree
4. As∆(S′(P5)) = 4, ϕ(S′(P5)) ≤ 5. If ϕ(S′(P5)) = 5 then
S′(P5) must have five vertices of degree 4 which is not pos-
sible, as we stated earlier thatS′(P5) has only three vertices
of degree 4. Consequently,ϕ(S′(P5)) 6= 5. If ϕ(S′(P5)) = 4,
thenS′(P5) must have four vertices of degree 3 which is not
possible, asS′(P5) has no vertex of degree 3. Consequently,
ϕ(S′(P5)) 6= 4. Thereforeϕ(S′(P5)) can be either 3 or 2. Due
to the adjacency of vertices inS′(P5), at most threeb-vertices
can be generated for any proper coloring. Thusϕ(S′(P5)) = 3.
Consequently, we color the vertices asc(v1) = c(v′1) = 1,
c(v2) = c(v′2) = 2, c(v3) = c(v′3) = 3, c(v4) = c(v′4) = 1,
c(v5) = c(v′5) = 2, which is ab-coloring withb-verticesv4, v2
andv3 for the color classesc1, c2 andc1 respectively.
Case 5:Whenn = 6.
|V (S′(P6))| = 12 and V (S′(P6))= {v1, v2, v3, v4, v5, v6,

v′1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6}. Also the graphS′(P6) has two vertices
of degree 1, six vertices of degree 2 and four vertices of degree
4. As ∆(S′(P6)) = 4, ϕ(S′(P6)) ≤ 5. If ϕ(S′(P6)) = 5
then S′(P6) must have five vertices of degree 4 which is
not possible, as we stated earlier thatS′(P6) has only four
vertices of degree 4. Consequently,ϕ(S′(P6)) 6= 5. Therefore
ϕ(S′(P6)) can be either 4, 3 or 2. Due to the adjacency of
vertices inS′(P6), at most fourb-vertices can be generated
for any proper coloring. Thusϕ(S′(P6)) = 4. Consequently,
we color the vertices asc(v1) = 3, c(v2) = 1, c(v3) = 2,
c(v4) = 2, c(v5) = 4, c(v6) = 2, c(v′1) = 4, c(v′2) = 4,
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c(v′3) = 2, c(v′4) = 2, c(v′5) = 1, c(v′6) = 1, which is ab-
coloring with b-verticesv2, v3, v4 andv5 for the color classes
c1, c2, c3 andc4 respectively.
Case 6:Whenn = 7.
|V (S′(P7))| = 14 and V (S′(P7)) = {v1, v2, v3, v4, v5,

v6, v7, v
′

1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6, v
′

7}. Also the graphS′(P7) has two
vertices of degree 1, seven vertices of degree 2 and five
vertices of degree 4. As∆(S′(P7)) = 4, ϕ(S′(P7)) ≤ 5.
But due to the adjacency of vertices inS′(P7), at most
four b-vertices can be generated for any proper coloring.
Thusϕ(S′(P7)) = 4. Consequently, we color the vertices as
c(v1) = 4, c(v2) = 1, c(v3) = 2, c(v4) = 3, c(v5) = 1,
c(v6) = 4, c(v7) = 2, c(v′1) = 3, c(v′2) = 3, c(v′3) = 4,
c(v′4) = 4, c(v′5) = 1, c(v′6) = 4, c(v′7) = 3, which is ab-
coloring with b-verticesv2, v3, v4 andv6 for the color classes
c1, c2, c3 andc4 respectively.
Case 7:Whenn = 8.
|V (S′(P8))| = 16 and V (S′(P8)) = {v1, v2, v3, v4, v5,

v6, v7, v8, v
′

1, v
′

2, v
′

3, v
′

4, v
′

5, v
′

6, v
′

7, v
′

8}. Also the graphS′(P8)
has two vertices of degree 1, eight vertices of degree 2 and six
vertices of degree 4. As∆(S′(P8)) = 4, ϕ(S′(P8)) ≤ 5. Due
to the adjacency of vertices inS′(P8), at most fiveb-vertices
can be generated for any proper coloring. Thusϕ(S′(P8)) = 5.
Consequently, we color the vertices asc(v1) = 3, c(v2) = 1,
c(v3) = 2, c(v4) = 3, c(v5) = 4, c(v6) = 2, c(v7) = 5,
c(v8) = 4, c(v′1) = 4, c(v′2) = 4, c(v′3) = 4, c(v′4) = 5,
c(v′5) = 1, c(v′6) = 1, c(v′7) = 3, c(v′8) = 3, which is a
b-coloring with b-verticesv2, v3, v4, v5 and v7 for the color
classesc1, c2, c3, c4 andc5 respectively.
Case 8:Whenn > 8.
|V (S′(Pn))| = 2n. We color the verticesv1, v2,...,

v8, v
′

1, v
′

2, ..., v
′

8 as in S′(P8) and for the remaining vertices
assign the colors as

c(v2i+1) = c(v′2i+1) = 1; i = 4, 5, 6, ...
c(v2i) = c(v′2i) = 2; i = 5, 6, 7, 8, ...

Theb-vertices are same as theb-vertices in the case ofS′(P8).
Thusϕ(S′(Pn)) = 5; for all n > 8. Hence the theorem.
Illustration 2.8: The graphS′(P8) and itsb-coloring is shown
in Figure 2.
Definition 2.9: The middle graphM(G) of a graphG is the
graph whose vertex set isV (G) ∪ E(G) and in which two
vertices are adjacent if and only if either they are adjacent

edges ofG or one is a vertex ofG and the other is an edge
incident on it.
Remark 2.10: As reported in Vijayalakshmiet al. [8],
ϕ(M(Pn)) = n which is incorrect as we have the following
theorem.

Theorem 2.11:ϕ(M(Pn)) =















2, n = 2
3, n = 3, 4
4, n = 5, 6, 7
5, n ≥ 8.

Proof: Let v1, v2, .., vn be the vertices ande1, e2, ..., en−1 be
the edges of pathPn. M(Pn) is the middle graph ofPn

with verticesv1, v2, ...., vn−1, vn, e1, e2, ...., en−1 such thate1
is adjacent tov1, v2 and e2, en−1 is adjacent tovn−1, vn
and en−2 and ei is adjacent tovi, vi+1, ei−1 and ei+1; i =
2, 3, . . . , n− 2

The proof is divided into following cases.
Case 1: Whenn = 2.
|V (M(P2))| = 3 andV (M(P2)) ={v1, e1, v2}. By Propo-

sition 2.2,ϕ(M(P2)) = 2 as the graphM(P2) is isomorphic
to P3.
Case 2: Whenn = 3.
|V (M(P3))| = 5 andV (M(P3)) ={v1, e1, v2, e2, v3}. Also

the graphM(P3) has two vertices of degree 1, one vertex of
degree 2 and two vertices of degree 3. SinceM(P3) contains
aK3, ϕ(M(P3)) ≥ 3. As ∆(M(P3)) = 3, ϕ(M(P3)) ≤ 4. If
ϕ(M(P3)) = 4 thenM(P3) must have four vertices of degree
3, which is not possible as we stated earlier thatM(P3) has
only two vertices of degree 3. Consequently,ϕ(M(P3)) 6= 4.
Thusϕ(M(P3)) = 3 and we color the vertices asc(e1) = 1,
c(e2) = 3, c(v1) = c(v2) = c(v3) = 2, which is ab-coloring
with b-verticese1, v2 and e2 for the color classesc1, c2 and
c3 respectively.
Case 3: Whenn = 4.
|V (M(P4))| = 7 and V (M(P4)) ={v1, e1, v2, e2, v3, e3,

v4}. Also the graphM(P4) has two vertices of degree 1, two
vertices of degree 2, two vertices of degree 3 and one vertex
of degree 4. SinceM(P4) contains aK3, ϕ(M(P4)) ≥ 3. As
∆(M(P4)) = 4, ϕ(M(P4)) ≤ 5. Thus3 ≤ ϕ(M(P4)) ≤ 5. If
ϕ(M(P4)) = 5 thenM(P4) must have five vertices of degree
4 which is not possible as we stated earlier thatM(P4) has
only one vertex of degree 4. Consequently,ϕ(M(P4)) 6= 5. If
ϕ(M(P4)) = 4 thenM(P4) must have four vertices of degree
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3 which is not possible asM(P4) has only two vertices of
degree 3. Consequently,ϕ(M(P4)) 6= 4. Thusϕ(M(P4)) = 3.
Consequently, we color the vertices asc(v1) = 2, c(v2) = 2,
c(v3) = 2, c(v4) = 2, c(e1) = 1, c(e2) = 3, c(e3) = 1,
which is a b-coloring with b-verticese1, e2 and e3 for the
color classesc1, c2 andc3 respectively.
Case 4: Whenn = 5.
|V (M(P5))| = 9 and V (M(P5)) ={v1, e1, v2, e2, v3, e3,

v4, e4, v5}. Also the graphM(P5) has two vertices of de-
gree 1, three vertices of degree 2, two vertices of degree 3
and two vertices of degree 4. SinceM(P5) contains aK3,
ϕ(M(P5)) ≥ 3. As ∆(M(P5) = 4, ϕ(M(P5)) ≤ 5. Thus
3 ≤ ϕ(M(P5)) ≤ 5. If ϕ(M(P5)) = 5 then M(P5) must
have five vertices of degree 4 which is not possible as we
stated earlier thatM(P5) has only two vertices of degree
4. Consequently,ϕ(M(P5)) 6= 5. Supposeϕ(M(P5)) = 4,
we color the vertices asc(v1) = 2, c(v2) = 3, c(v3) = 1,
c(v4) = 1, c(v5) = 4, c(e1) = 1, c(e2) = 4, c(e3) = 2,
c(e4) = 3, which is ab-coloring with b-verticese1, e3, e4 and
e2 for the color classesc1, c2, c3 and c4 respectively. Thus
ϕ(M(P5)) = 4.
Case 5: Whenn = 6.
|V (M(P6))| = 11 andV (M(P6)) = {v1, e1, v2, e2, v3, e3,

v4, e4, v5, e5, v6}. Also the graphM(P6) has two vertices of
degree 1, four vertices of degree 2, two vertices of degree 3
and three vertices of degree 4. SinceM(P6) contains aK3,
ϕ(M(P6)) ≥ 3. As ∆(M(P6) = 4, ϕ(M(P6)) ≤ 5. Thus
3 ≤ ϕ(M(P6)) ≤ 5. If ϕ(M(P6)) = 5 then M(P6) must
have five vertices of degree 4 which is not possible as we
stated earlier thatM(P6) has only three vertices of degree
4. Consequently,ϕ(M(P6)) 6= 5. Supposeϕ(M(P6)) = 4,
we color the vertices asc(v1) = 2, c(v2) = 3, c(v3) = 1,
c(v4) = 1, c(v5) = 4, c(v6) = 2, c(e1) = 1, c(e2) = 4,
c(e3) = 2, c(e4) = 3, c(e5) = 1, which is ab-coloring with
b-verticese1, e3, e4 ande2 for the color classesc1, c2, c3 and
c4 respectively. Thusϕ(M(P6)) = 4.
Case 6: Whenn = 7.
|V (M(P7))| = 13 and V (M(P7)) ={v1, e1, v2, e2, v3, e3,

v4, e4, v5, e5, v6, e6, v7}. Also the graphM(P7) has two ver-
tices of degree 1, five vertices of degree 2, two vertices of
degree 3 and four vertices of degree 4. SinceM(P7) contains
a K3, ϕ(M(P7)) ≥ 3. As ∆(M(P7) = 4, ϕ(M(P7)) ≤ 5.
Thus 3 ≤ ϕ(M(P7)) ≤ 5. If ϕ(M(P7)) = 5 then M(P7)
must have five vertices of degree 4 which is not possible as
we stated earlier thatM(P7) has only four vertices of degree
4. Consequently,ϕ(M(P7)) 6= 5. Supposeϕ(M(P7)) = 4,
we color the vertices asc(v1) = 2, c(v2) = 3, c(v3) = 1,
c(v4) = 1, c(v5) = 4, c(v6) = 2, c(v7) = 4, c(e1) = 1,
c(e2) = 4, c(e3) = 2, c(e4) = 3, c(e5) = 1, c(e6) = 3, which
is a b-coloring with b-verticese1, e3, e4 and e2 for the color
classesc1, c2, c3 andc4 respectively. Thusϕ(M(P7)) = 4.
Case 7: Whenn = 8.
|V (M(P8))| = 15 and V (M(P8)) ={v1, e1, v2, e2, v3, e3,

v4, e4, v5, e5, v6, e6, v7, e7, v8}. Also M(P8) has two vertices
of degree 1, six vertices of degree 2, two vertices of degree
3 and five vertices of degree 4. SinceM(P8) contains aK3,
ϕ(M(P8)) ≥ 3. As ∆(M(P8) = 4, ϕ(M(P8)) ≤ 5. Thus
3 ≤ ϕ(M(P8)) ≤ 5. As M(P8) has five vertices of degree

4, we claim thatϕ(M(P8)) = 5. Then we color the vertices
as c(v1) = 2, c(v2) = 3, c(v3) = 4, c(v4) = 5, c(v5) = 1,
c(v6) = 2, c(v7) = 1, c(v8) = 4, c(e1) = 5, c(e2) = 1,
c(e3) = 2, c(e4) = 3, c(e5) = 4, c(e6) = 5, c(e7) = 3, which
is ab-coloring withb-verticese2, e3, e4, e5 ande6 for the color
classesc1, c2, c3, c4 andc5 respectively. Thusϕ(M(P8)) = 5.
Case 8: Whenn > 8.
|V (M(Pn))| = 2n− 1 . We color the verticesv1, v2, ..., v8,

e1, e2, ..., e8 as inM(P8) and for the remaining vertices assign
the colors as

c(v2i) = c(v2i+1) = 4,
c(e2i) = 2,
c(e2i+1) = 3; i = 4, 5, 6, ..

Theb-vertices are same as theb-vertices in the case ofM(P8).
Thusϕ(M(Pn)) = 5, for all n > 8. Hence the theorem.
Illustration 2.12: The graphM(P8) and its b-coloring is
shown inFigure 3.

III. C ONCLUDING REMARKS

The b-chromatic number ofPn is known while we in-
vestigate theb-chromatic numbers forD2(Pn), S

′(Pn) and
M(Pn). The present work throws some light on theb-coloring
of larger graphs obtained by means of some graph operations
on standard graphs.
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